APM for Vendor Provided Business Critical Enterprise Applications
January 20, 2017

Sri Chaganty
AppEnsure

Share this

Traditionally, Application Performance Management (APM) is usually associated with solutions that instrument application code. There are two fundamental limitations with such associations. If instrumenting the code is what APM is all about, then APM is applicable only to homegrown applications for which access to code is available.

However, the majority of business critical applications are not homegrown. As the chart below shows, the $320B enterprise software market is driven by vendors who provide solutions for which there is no access to the source code. The enterprise software market in the chart covers a full assortment of commercially off-the-shelf products ranging from corporate databases to Enterprise Resource Planning (ERP) solutions and from Cloud-enabled productivity tools to mission-critical vertical applications. However, there are technical challenges with code instrumentation that are overlooked with this traditional association.


Source: Apps Run the World, 2016

Vendor Provided Software

Traditional APM vendors focus on application software that is developed in house, mainly based on Web Services. These solutions employ Byte Code Instrumentation (BCI), a technique for adding bytecode during "run time." These solutions are developer focused. If developers want to debug or profile the code during run time, BCI is an effective solution.

In reality, enterprises depend on both in-house developed software as well as vendor provided software. Applications that businesses use can be dived into two categories: 1) Business Critical Applications and 2) Productivity Applications. While business critical applications are the foundation on which the business success is dependent upon, productivity applications like email are also equally important for enterprises.

Generally, about 80% of the applications that enterprises use in either category are packaged applications supplied by vendors like Microsoft, SAP, Oracle, PeopleSoft and others. Only 20% of the applications are developed in-house. In the majority of cases, the in-house developed applications generally wrap around vendor provided software.



A common example is an application developed based on web services customized for a business that are supported on SAP in the background. Instrumenting vendor provided software is not possible as the source code is not provided by the vendor, therefore, code instrumentation techniques are not feasible for vendor provided software.

Instrumenting in-house developed application software at different points gives a rich view to optimize the application throughout development. However, there are several types of problems that such instrumentation just can't see. It does not, and cannot, always deliver the complete visibility that users think they're getting. In addition, code instrumentation is not "free", even with the expensive tools commercially available, it takes considerable coding skills (not widely available) to achieve effective code instrumentation without degrading the performance of the production code execution.

Technical Challenges

Code instrumentation can report on the performance of your application software stack, but the service offered to customers depends on far more than just the software – it depends on all of the networks, load balancers, servers, databases, external services like Active Directory, DNS etc., service providers and third parties you use to provide the service. 

Traditional APM products do only BCI. They claim to be transaction management solutions, though there are limitations to what they can do in Java environments, and they have zero visibility of non-Java topologies.

A real transaction management product needs to follow the transaction between different types of application-related components such as proxies, Web servers, app servers (Java and non-Java), message brokers, queues, databases and so forth. In order to do that, visibility into different types of transaction-related data is required, some of which only exists at the actual payload of each request. Java is an interpreter and therefore hides parts of the actual code implementation from the Java layer. The Java Virtual Machine (JVM) itself is written in C, therefore there are operating system-specific pieces that are not accessible from Java and thus not accessible through BCI techniques.

If you want to use features of TCP/IP packets for tracing a transaction between two servers, the actual structure of packets is not accessible from the Java layer. There is information that is crucial to trace transactions across more than just Java hops. Such information is available only at a lower layer than the Java code, thus not accessible by BCI, which limits the ability to trace transactions in the real world.

Conclusion

For vendor provided software, BCI is an ineffective technique. For in-house built software, BCI allows programmers to enhance the code they are developing. It is a necessary tool for development teams but insufficient as it does not offer the visibility that IT Operations require in order to understand the application service delivery chain performance. If your business depends on mission-critical web or legacy applications, then monitoring how your end users interact with your applications is more important than how well the code is written. The responsiveness of the application determines the end user's experience. The true measurement of end-user experience is availability and response time of the application, end-to-end and hop-by-hop – covering the entire application service delivery chain.

Sri Chaganty is COO and CTO/Founder at AppEnsure.

Share this

The Latest

March 19, 2024

If there's one thing we should tame in today's data-driven marketing landscape, this would be data debt, a silent menace threatening to undermine all the trust you've put in the data-driven decisions that guide your strategies. This blog aims to explore the true costs of data debt in marketing operations, offering four actionable strategies to mitigate them through enhanced marketing observability ...

March 18, 2024

Gartner has highlighted the top trends that will impact technology providers in 2024: Generative AI (GenAI) is dominating the technical and product agenda of nearly every tech provider ...

March 15, 2024

In MEAN TIME TO INSIGHT Episode 4 - Part 1, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at Enterprise Management Associates (EMA) discusses artificial intelligence and network management ...

March 14, 2024

The integration and maintenance of AI-enabled Software as a Service (SaaS) applications have emerged as pivotal points in enterprise AI implementation strategies, offering both significant challenges and promising benefits. Despite the enthusiasm surrounding AI's potential impact, the reality of its implementation presents hurdles. Currently, over 90% of enterprises are grappling with limitations in integrating AI into their tech stack ...

March 13, 2024

In the intricate landscape of IT infrastructure, one critical component often relegated to the back burner is Active Directory (AD) forest recovery — an oversight with costly consequences ...

March 12, 2024

eBPF is a technology that allows users to run custom programs inside the Linux kernel, which changes the behavior of the kernel and makes execution up to 10x faster(link is external) and more efficient for key parts of what makes our computing lives work. That includes observability, networking and security ...

March 11, 2024

Data mesh, an increasingly important decentralized approach to data architecture and organizational design, focuses on treating data as a product, emphasizing domain-oriented data ownership, self-service tools and federated governance. The 2024 State of the Data Lakehouse report from Dremio presents evidence of the growing adoption of data mesh architectures in enterprises ... The report highlights that the drive towards data mesh is increasingly becoming a business strategy to enhance agility and speed in problem-solving and innovation ...

March 07, 2024
In this digital era, consumers prefer a seamless user experience, and here, the significance of performance testing cannot be overstated. Application performance testing is essential in ensuring that your software products, websites, or other related systems operate seamlessly under varying conditions. However, the cost of poor performance extends beyond technical glitches and slow load times; it can directly affect customer satisfaction and brand reputation. Understand the tangible and intangible consequences of poor application performance and how it can affect your business ...
March 06, 2024

Too much traffic can crash a website ... That stampede of traffic is even more horrifying when it's part of a malicious denial of service attack ... These attacks are becoming more common, more sophisticated and increasingly tied to ransomware-style demands. So it's no wonder that the threat of DDoS remains one of the many things that keep IT and marketing leaders up at night ...

March 05, 2024

Today, applications serve as the backbone of businesses, and therefore, ensuring optimal performance has never been more critical. This is where application performance monitoring (APM) emerges as an indispensable tool, empowering organizations to safeguard their applications proactively, match user expectations, and drive growth. But APM is not without its challenges. Choosing to implement APM is a path that's not easily realized, even if it offers great benefits. This blog deals with the potential hurdles that may manifest when you actualize your APM strategy in your IT application environment ...