Bringing Alert Management into the Present with Advanced Analytics
March 25, 2015

Kevin Conklin
Prelert

Share this

We have smart cars on the horizon that will navigate themselves. Mobile apps that make communication, navigation and entertainment an integral part of our daily lives. Your insurance pricing may soon be affected by whether or not you wear a personal health monitoring device. Everywhere you turn, the very latest IT technologies are being leveraged to provide advanced services that were unimaginable even ten years ago. So why is it that the IT environments that provide these services are managed using an analytics technology designed for the 1970s?

The IT landscape has evolved significantly over the past few decades. IT management simply has not kept pace. IT operations teams are anxious that too many problems are reported first by end users. Support teams worry that too many people spend too much time troubleshooting. Over 70 percent of troubleshooting time is actually wasted following false hunches because alerts provide no value to the diagnostic process. Enterprises that are still reliant on yesterday’s management strategies will find it increasingly difficult to solve today’s operations and performance management challenges.

This is not just an issue of falling behind a technology curve. There is a real business impact in increasing incident rates, failing to detect potentially disastrous outages and human resources wasting valuable time. An increasing number of IT shops are anxiously searching for alternatives.

This is where advanced machine learning analytics can help.

Too often operations teams can become engulfed by alerts – getting tens of thousands a day and not knowing which to deal with and when, making it quite possible that something important was ignored while time was wasted on something trivial. Through a powerful combination of machine learning and anomaly detection, advanced analytics can reduce the alarms to a prioritized set that have the largest impact on the environment. By learning which alerts are “normal”, these systems define an operable status quo. In essence, machine learning filters out the “background noise” of alerts that, based on their persistence, have no effect on normal operations. From there, statistical algorithms identify and rank “abnormal” outliers on a scale measuring severity (value of a spike or drop occurrence), rarity (number of previous instances) or impact (quantity of related anomalies). The result is a reduction from hundreds of thousands of noisy alerts a week to a few dozen notifications of real problems.

Despite producing huge volumes of alerts, rules and thresholds implementations often miss problems or report them long after the customer has experienced the impact. The fear of generating even more alerts forces monitoring teams to select fewer KPIs, thus decreasing the likelihood of detection. Problems that slowly approach thresholds go unnoticed until user experience is already impacted. Adopting this advanced analytics approach empowers enterprises to not only identify problems that rules and thresholds miss or simply execute against too late, but also provide their troubleshooting teams with pre-correlated causal data.

By replacing legacy rules and thresholds with machine learning anomaly detection, IT teams can monitor larger sets of performance data in real-time. Monitoring more KPIs enable a higher percentage of issues to be detected before the users report them. Through real-time cross correlation, related anomalies are detected and alerts become more actionable. Early adopters report that they are able to reduce troubleshooting time by 75 percent, with commensurate reductions in the number of people involved by as much as 85 percent.

Advanced machine learning systems will fundamentally change the way data is converted into information over the next few years. If your business is leveraging information to provide competitive services, you can’t afford to be the laggard.

Kevin Conklin is VP of Marketing at Prelert.

Share this

The Latest

March 24, 2017

A growing IT delivery gap is slowing down the majority of the businesses surveyed and directly putting revenue at risk, according to MuleSoft's 2017 Connectivity Benchmark Report on digital transformation initiatives and the business impact of APIs ...

March 23, 2017

Why containers are growing in popularity is no surprise — they’re extremely easy to spin up or down, but come with an unforeseen issue. Without the right foresight, DevOps and IT teams may lose a lot of visibility into these containers resulting in operational blind spots and even more haystacks to find the presumptive performance issue needle ...

March 22, 2017

Much emphasis is placed on servers and storage when discussing Application Performance, mainly because the application lives on a server and uses storage. However, the network has considerable importance, certainly in the case of WANs where there are ways of speeding up the transmission of data of a network ...

March 21, 2017

The majority of IT executives believe investment in IT Service Management (ITSM) is important to gain the agility needed to compete in an era of global, cross-industry disruption and digital transformation, according to Delivering Value to Today’s Digital Enterprise: The State of IT Service Management 2017, a report by BMC, conducted in association with Forbes ...

March 17, 2017

Let’s say your company has examined all the potential pros and cons, and moved your critical business applications to the cloud. The advertised benefits of the cloud seem like they’ll work out great. And in many ways, life is easier for you now. But as often happens when things seem too good to be true, reality has a way of kicking in to reveal just exactly how many things can go wrong with your cloud setup – things that can directly impact your business ...

March 16, 2017

IT leadership is more driven to be innovative than ever, but also more in need of justifying costs and showing value than ever. Combining the two is no mean feat, especially when individual technologies are put forward as the single tantalizing answer ...

March 15, 2017

The move to Citrix 7.X is in full swing. This has improved the centralizing of Management and reduction of costs, but End User Experience is becoming top of the business objectives list. However, delivering that is not something to be considered after the upgrade ...

March 14, 2017

As organizations understand the findings of the Cyber Monday Web Performance Index and look to improve their site performance for the next Cyber Monday shopping day, I wanted to offer a few recommendations to help any organization improve in 2017 ...

March 13, 2017

Online retailers stand to make a lot of money on Cyber Monday as long as their infrastructure can keep up with customers. If your company's site goes offline or substantially slows down, you're going to lose sales. And even top ecommerce sites experience performance or stability issues at peak loads, like Cyber Monday, according to Apica's Cyber Monday Web Performance Index ...

March 10, 2017

Applications and infrastructure are being deployed and commissioned at a faster rate than ever before, the number of tools it takes to effectively manage these services is multiplying, and the expectations placed on IT to ensure customer satisfaction is increasing, according to The State of Monitoring 2017 report from BigPanda ...