Losing $$ Due to Ticket Times? Hack Response Time Using Data
June 03, 2016

Collin Firenze
Optanix

Share this

Without the proper expertise and tools in place to quickly isolate, diagnose, and resolve an incident, a quick routine error can result in hours of downtime – causing significant interruption in business operations that can impact both business revenue and employee productivity. How can we stop these little instances from turning into major fallouts? Major companies and organizations, take heed:

1. Identify the correlation between issues to expedite time to notify and time to resolve

Not understanding the correlation between issues is detrimental to timely resolutions. With a network monitoring solution in place, lack of automated correlation can generate excess "noise." This then requires support teams to act on numerous individualized alerts, rather than a single ticket that has all relevant events and information for the support end-user.

The correlated monitoring approach provides a holistic view into the network failure for support teams. Enabling support teams to analyze the network failure by utilizing the correlated events to efficiently identify the root cause will provide them the opportunity to promptly execute the corrective action to resolve the issue at hand.

Correlation consolidates all relevant information into a single ticket allowing support teams to largely reduce their staffing models, with only one support engineer needed to act on the incident as opposed to numerous resources engaging on individualized alerts.

2. Constantly analyzing raw data for trends helps IT teams proactively spot and prevent recurring issues

Aside from the standard reactive response of a support team, there is substantial benefit in the proactive analysis of raw data from your environment. By being proactive, trends and failures can be identified, followed by corrective and preventative actions taken to ensure support teams are not spending time investigating repeat issues. This approach not only creates a more stable environment with fewer failures, but also allows support teams to reduce manual hours and cost by avoiding "wasted" investigation on known and reoccurring issues.

Within a support organization, a Problem Management Group (PMG) is often implemented to fulfill the role of proactive analysis on raw data. In such instances, a PMG will create various scripts and calculation that will turn the raw data into a meaningful representation of the data set, to identify areas of concern such as:

■ Common types of failures

■ Failures within a specific region or location

■ Issues with a specific end-device type or model

■ Reoccurring issues at a specific time/day

■ Any trends in software or firmware revisions.

Once the raw data is analyzed by the PMG, the results can be relayed to the support team for review so a plan can be formalized to take the appropriate preventative action. The support team will work to present the data and their proposed solution, and seek approval to execute the corrective/preventative steps.

3. Present data in interactive dashboards and business intelligence reports to ensure proper understanding

Not every support team has the benefit of a PMG. In this specific circumstance, it's important that the system monitoring tools are fulfilling the role of the PMG analysis, and presenting the data in an easy-to-understand format for the end-user. From a tools perspective, the data analysis can be approached from both an interactive dashboard perspective, as well as through the use of business intelligence reports.

Interactive dashboards are a great way of presenting data in a format that caters to all audiences, from administrative and management level, and technical engineers. A combination of both graphs (i.e. pie charts, line graphs, etc.) and summarized metrics (i.e. Today, This Week, Last 30 days, etc.) are utilized to display the analyzed data, with the ability to filter capabilities to allow the end-user to view only desired information without the interference of all analyzed data which may not be applicable to their investigation.

In fact, a more "customizable" approach to raw data analysis would be a Business Intelligence Reporting Solution (BIRS). Essentially, the BIRS collects the raw data for the end-user, and provides drag and drop reporting, so that any desired data elements of interest can be incorporated into a customized on-demand report. What is particularly helpful for the user is the easy ability to save "filtering criteria" that would be beneficial to utilize repeatedly (i.e. Monthly Business Review Reports).

With routine errors, the main goal is to stay ahead of them by using data to identify correlations. Through effective event correlation, and by empowering teams with raw data, you can ensure that issues are quickly mitigated and don't pose the risk of impacting company ROI and system availability.

Collin Firenze is Associate Director at Optanix.

Share this

The Latest

August 21, 2018

High availability's (HA) primary objective has historically been focused on ensuring continuous operations and performance. HA was built on a foundation of redundancy and failover technologies and methodologies to ensure business continuity in the event of workload spikes, planned maintenance, and unplanned downtime. Today, HA methodologies have been superseded by intelligent workload routing automation (i.e., intelligent availability), in that data and their processing are consistently directed to the proper place at the right time ...

August 20, 2018

You need insight to maximize performance — not inefficient troubleshooting, longer time to resolution, and an overall lack of application intelligence. Steps 5 through 10 will help you maximize the performance of your applications and underlying network infrastructure ...

August 17, 2018

As a Network Operations professional, you know how hard it is to ensure optimal network performance when you’re unsure of how end-user devices, application code, and infrastructure affect performance. Identifying your important applications and prioritizing their performance is more difficult than ever, especially when much of an organization’s web-based traffic appears the same to the network. You need insight to maximize performance — not inefficient troubleshooting, longer time to resolution, and an overall lack of application intelligence. But you can stay ahead. Follow these 10 steps to maximize the performance of your applications and underlying network infrastructure ...

August 16, 2018

IT organizations are constantly trying to optimize operations and troubleshooting activities and for good reason. Let's look at one example for the medical industry. Networked applications, such as electronic medical records (EMR), are vital for hospitals to provide outstanding service to their patients and physicians. However, a networking team can often not be aware of slow response times on the remotely hosted EMR application until a physician or someone else calls in to complain ...

August 15, 2018

In 2014, AWS Lambda introduced serverless architecture. Since then, many other cloud providers have developed serverless options. What’s behind this rapid growth? ...

August 14, 2018

This question is really two questions. The first would be: What's really going on in terms of a confusion of terms? — as we wrestle with AIOps, IT Operational Analytics, big data, AI bots, machine learning, and more generically stated "AI platforms" (… and the list is far from complete). The second might be phrased as: What's really going on in terms of real-world advanced IT analytics deployments — where are they succeeding, and where are they not? This blog will look at both questions as a way of introducing EMA's newest research with data ...

August 13, 2018

Consumers will now trade app convenience for security, according to a study commissioned by F5 Networks, The Curve of Convenience – The Trade-Off between Security and Convenience ...

August 10, 2018

Gartner unveiled the CX Pyramid, a new methodology to test organizations’ customer journeys and forge more powerful experiences that deliver greater customer loyalty and brand advocacy ...

August 09, 2018

Nearly half (48 percent) of consumers report that they currently use, or have used in the past, services of organizations that were involved in a publicly disclosed data breach and, of those, 48 percent have stopped using the services of an organization because of a breach, according to Global State of Digital Trust Survey and Index 2018, a new report from CA Technologies ...

August 08, 2018

Here's the problem: IT teams are in the dark. The only information they have available to them is based on what users decide to tell them about through calls to the help desk ...