Monitoring Pokémon Go: When Your App Breaks All Records
August 03, 2016

Payal Chakravarty
IBM

Share this

In July 2016, the world of gaming was taken over by a new phenomenon – Pokémon Go. Within a matter of days "augmented reality" became mainstream and the app, which was launched mainly in the US and Australia, overtook Tinder and Twitter in the total number of downloads. Pokémon Go surpassed the wildest expectations of its creators, Niantic Labs, and then some.

With popularity comes scale, and with scale comes an overload of requests to the gaming servers. If you are not prepared enough, requests fail and users are frustrated. Frustrated with Pokémon Go crashes, laymen were talking about server status and memes were being created and circulated on social networks. Overnight, websites spun up just to report if the game was up or down in different countries. Being closely related to the APM space, my head was drawing up various ways in which Pokémon Go was perhaps addressing the issue and what monitoring they had to put in place to retain their popularity. Here is my list of probable solutions Pokémon Go could employ to improve the experience for their users and avid fans:

1. Synthetic monitoring

The first and most important question: Is the application up or down, and can users login from around the world?

A game this popular would need to ensure a five nine availability and high Apdex score. With synthetic end-user monitoring, simulated tests can be run from around the world to check for availability and response time as often every few seconds. The simulations can allow you to login to the app and interact with the app as a gamer would.

For example if a user is catching a Pokémon, he makes a HTTP request to an API “catchPokemon” with a set of parameters. Continuously checking if these HTTP requests return a valid response code within a reasonable amount of time ensures the “catching a pokemon” capability is functioning right. This ensures problems are detected and fixed proactively. Synthetic monitoring also helps determine if an issue was due to network latency.

2. Mobile Real User Monitoring

Pokémon Go is a mobile game that is accessed only from mobile devices. Hence Mobile End User Monitoring with crash analytics is imperative to rapidly scope the problem.

Data points – such as how often did crashes occur; what devices, OS and applications versions were being used when the crash occurred; and which geographies did the user come from – are extremely essential to isolate the problem. For example, insights such as “crashes between 6 and 6:30 PM PST were happening from iOS v9 users on West Coast specifically when users attempted to transfer a Pokemon” gives an instant problem scope to delve deeper into.

Further, by tracing individual requests, one can delve into exactly what line of code or what services/microservices could have impacted a particular crash. This data becomes even more insightful if it can be correlated with Twitter sentiment analysis.

A comparison between response time trends and throughput is also another good data point to evaluate if slow responses were due to extra load or an application bug.

3. Server, Database, Application Server Monitoring

In order to deal with scale, the infrastructure to support the game needs to be monitored to spot bottlenecks easily. This requires automatic discovery and health check of all the components that the game runs on.

Considering auto-scaling and high resiliency failover will probably be turned on to cater to the load, the discovery needs to be truly dynamic to track any new nodes that come up. A dynamically discovered topology could have multiple components such as application servers, web servers, databases, load balancers, content distribution networks etc. Memory leaks, CPU consumption, database I/O and space utilization, queues and deadlocks are metrics whose trends need to be monitored continuously with automatic baselines to help identify deviation from normal. Additionally, tracking and correlating log errors via log analysis from these various resources can help diagnose issues rapidly.

4. Predictive anomaly detection for the future

With sudden popularity, one thing that is bound to go out of control is a flood of alerts. To reduce alert noise and ensure that right issues are being worked on, there is the need to have intelligent monitoring alerts. Alerts should be generated based on analyzing, correlating and de-duplicating a set of events and should present sufficient information to enable faster debugging.

As an advanced setup, Pokémon Go monitoring should enable predictive anomaly detection to predict trends on capacity and consumption of backend resources much before they become issues.

Payal Chakravarty is a Program Director of Product Management for IBM Application Performance Management.

Share this

The Latest

October 16, 2017
Hurricane season is in full swing. With the latest incoming cases of mega-storms devastating the Southeastern shoreline, communities are struggling to restore daily normalcy. People have been stepping up and showing remarkable strength and leadership in helping those affected. However, there is another area that we need to remember in these trying times – and that is businesses continuity ...
October 12, 2017

Gartner highlighted the top strategic technology trends that will impact most organizations in 2018. The next trends focus on blending the digital and physical worlds to create an immersive, digitally enhanced environment. The last three refer to exploiting connections between an expanding set of people and businesses, as well as devices, content and services to deliver digital business outcomes ...

October 11, 2017

Gartner highlighted the top strategic technology trends that will impact most organizations in 2018. The first three strategic technology trends explore how artificial intelligence (AI) and machine learning are seeping into virtually everything and represent a major battleground for technology providers over the next five years ...

October 10, 2017
This is the sixth in my series of blogs inspired by EMA's AIA buyer's guide — directed at helping IT invest in Advanced IT Analytics (AIA), what the industry more commonly calls "Operational Analytics." In this blog, I examine scenario-related shopping cart objectives for AIA. At EMA, we evaluated seven unique scenarios relevant to AIA adoptions. Our scenarios included agile/DevOps, Integrated security, change impact awareness, capacity optimization, business impact, business alignment and unifying IT ...
October 06, 2017

In the Riverbed Future of Networking Global Survey, more than half of the respondents acknowledged that achieving operational agility is critical to the success of a modern enterprise, and next-generation networks as well as the technology to support them are key to reaching this goal ...

October 05, 2017

Legacy infrastructures are holding back their cloud and digital strategies, according to the Riverbed Future of Networking Global Survey 2017. Nearly all survey respondents agree that legacy network infrastructure will have difficulty keeping pace with the changing demands of the cloud and hybrid networks ...

October 04, 2017

Digital disruptors are emerging in all industries, and the need for CIOs to embrace digital transformation is urgent, according to Gartner ...

October 02, 2017

Environments indicate "where" the AIA solutions we investigated can be applied. All 13 of the solutions we investigated support cloud for performance, core infrastructure, and application performance and availability. Mainframe had the support of six of our respondents, and IoT and cloud for change and capacity were not yet prime areas of focus for most of the vendors in our AIA buyer's guide ...

September 29, 2017

Cost, overhead, and time to value are often key challenges in adopting AIA solutions. In the past, these factors have often been especially onerous. But we saw strong levels of improvement among many vendors, and surprising areas of innovation among others ...

September 28, 2017
Most senior executives recognize that unified communications and collaboration (UC) are integral applications on the digital transformation path. As a result, many companies are in the process of replacing legacy voice and video infrastructure and disparate messaging and collaboration tools with next-generation UC systems, including cloud-based unified communication as a service (UCaaS). With UC, companies can accelerate time-to-revenue, improve productivity and reduce capex and opex – the three pillars of return on investment (ROI) that drive corporate strategy ...