ManageEngine Recognized in the 2018 Gartner MQ for Security Information and Event Management
January 10, 2019
Share this

ManageEngine has been positioned in the Gartner 2018 Magic Quadrant for Security Information and Event Managementi (SIEM).

This is the third consecutive year that ManageEngine's SIEM solution, Log360, has been named in this report. A complimentary copy of the complete report is available at www.manageengine.com/log-management/gartner-siem-mq.html.

More enterprises than ever are jumping on the cloud bandwagon, as cloud services offer the speed and agility that's required to meet business goals efficiently. However, ensuring security for cloud and hybrid environments is still a challenge for many enterprises. SIEM solutions simplify this task by offering enterprises comprehensive security features for their IT environments from a single console.

"We at ManageEngine are focused on building a future-oriented, comprehensive yet simple-to-use SIEM solution that will meet the rapidly growing demands of enterprise security," said Manikandan Thangarajan, Director of Product Management at ManageEngine. "We want to equip contemporary and future SOCs with the ability to detect, respond to and mitigate sophisticated attacks with an advanced threat intelligence platform as well as seamlessly orchestrate security operations across on-premises, cloud and hybrid platforms. We believe Gartner's recognition is honoring our efforts on this constant evolution."
Highlights of Log360

Log360, ManageEngine's exhaustive yet easy-to-use SIEM solution, helps enterprises ensure security across on-premises and cloud environments. Log360's critical functions include its ability to be quickly deployed; capability to automatically discover and configure Windows infrastructure, network devices, and SQL databases for monitoring; ability to capture information using various methods; and use of automatic parsing.

In addition to being positioned in the Magic Quadrant for SIEM, Gartner also named ManageEngine (Log360) in its 2018 Critical Capabilities for Security Information and Event Managementi report, which extends the Magic Quadrant analysis for deeper insights into providers' product and service offerings.

Log360 features include:

- Support for cloud monitoring: Analyze and detect suspicious events in IaaS platforms such as Amazon Web Services (AWS) and Azure in addition to SaaS applications such as Salesforce.

- Security auditing of physical and virtual infrastructures: Audit volumes of log data generated by various sources - including Windows and Linux servers, EMC and NetApp file servers, Active Directory environments, and VMware and Hyper-V machines - and turn that data into actionable insights.

- Intuitive and real-time security analytics: Use over 1,000 prepackaged report templates, interactive dashboards, and alert profiles, all of which cover the basic security, auditing and compliance needs of most enterprises. These components provide immediate insight into suspicious events and facilitate quick decision-making.

- Advanced threat detection: Detect malicious traffic in the network and stop potential network intrusions at their earliest stages thanks to STIX/TAXII threat feed processors and a global IP threat database. Log360's real-time correlation engine can detect indicators of compromise and attacks across different resources in a network to help preempt security threats.

- User behavior analytics: Deter insider attacks thanks to the Log360 user behavior analytics module, which is powered by machine learning. It quickly spots user behavior anomalies such as abnormal user logons, logon failures, unusual user accesses to critical resources, and more.

- Streamlined incident management system: Track the resolution of detected incidents and ensure accountability in the incident resolving process with Log360's built-in incident management module. This module also supports raising tickets in help desk software - such as ServiceNow, ManageEngine ServiceDesk Plus, JIRA, Zendesk and more - for every threat detected in the network.

Share this

The Latest

October 17, 2019

As the data generated by organizations grows, APM tools are now required to do a lot more than basic monitoring of metrics. Modern data is often raw and unstructured and requires more advanced methods of analysis. The tools must help dig deep into this data for both forensic analysis and predictive analysis. To extract more accurate and cheaper insights, modern APM tools use Big Data techniques to store, access, and analyze the multi-dimensional data ...

October 16, 2019

Modern enterprises are generating data at an unprecedented rate but aren't taking advantage of all the data available to them in order to drive real-time, actionable insights. According to a recent study commissioned by Actian, more than half of enterprises today are unable to efficiently manage nor effectively use data to drive decision-making ...

October 15, 2019

According to a study by Forrester Research, an enhanced UX design can increase the conversion rate by 400%. If UX has become the ultimate arbiter in determining the success or failure of a product or service, let us first understand what UX is all about ...

October 10, 2019

The requirements of an APM tool are now much more complex than they've ever been. Not only do they need to trace a user transaction across numerous microservices on the same system, but they also need to happen pretty fast ...

October 09, 2019

Performance monitoring is an old problem. As technology has advanced, we've had to evolve how we monitor applications. Initially, performance monitoring largely involved sending ICMP messages to start troubleshooting a down or slow application. Applications have gotten much more complex, so this is no longer enough. Now we need to know not just whether an application is broken, but why it broke. So APM has had to evolve over the years for us to get there. But how did this evolution take place, and what happens next? Let's find out ...

October 08, 2019

There are some IT organizations that are using DevOps methodology but are wary of getting bogged down in ITSM procedures. But without at least some ITSM controls in place, organizations lose their focus on systematic customer engagement, making it harder for them to scale ...

October 07, 2019
OK, I admit it. "Service modeling" is an awkward term, especially when you're trying to frame three rather controversial acronyms in the same overall place: CMDB, CMS and DDM. Nevertheless, that's exactly what we did in EMA's most recent research: <span style="font-style: italic;">Service Modeling in the Age of Cloud and Containers</span>. The goal was to establish a more holistic context for looking at the synergies and differences across all these areas ...
October 03, 2019

If you have deployed a Java application in production, you've probably encountered a situation where the application suddenly starts to take up a large amount of CPU. When this happens, application response becomes sluggish and users begin to complain about slow response. Often the solution to this problem is to restart the application and, lo and behold, the problem goes away — only to reappear a few days later. A key question then is: how to troubleshoot high CPU usage of a Java application? ...

October 02, 2019

Operations are no longer tethered tightly to a main office, as the headquarters-centric model has been retired in favor of a more decentralized enterprise structure. Rather than focus the business around a single location, enterprises are now comprised of a web of remote offices and individuals, where network connectivity has broken down the geographic barriers that in the past limited the availability of talent and resources. Key to the success of the decentralized enterprise model is a new generation of collaboration and communication tools ...

October 01, 2019

To better understand the AI maturity of businesses, Dotscience conducted a survey of 500 industry professionals. Research findings indicate that although enterprises are dedicating significant time and resources towards their AI deployments, many data science and ML teams don't have the adequate tools needed to properly collaborate on, build and deploy AI models efficiently ...