SignalFx Unlocks the Power of Observability as an Enterprise Service
June 28, 2019
Share this

SignalFx, unveiled a major platform update featuring enhancements to its Service Bureau, a set of industry-leading management capabilities that gives the observability team enterprise-wide control over monitoring with SignalFx.

DevOps operations are increasingly a shared responsibility across a large number of teams and users, all of whom need access to real-time monitoring and observability. Without a centralized observability service, the proliferation of multiple monitoring tools leads to fragmented visibility, higher cost, and inefficiencies.

Unlike traditional tools, SignalFx was designed from the start as a DevOps-ready platform that allows an entire organization to achieve shared visibility into the health and performance of their applications and infrastructure.

“Modern DevOps practices have unlocked unprecedented agility for organizations as teams can now respond quickly to customer needs with features and improvements,” said Cory Watson, Technical Director, Office of the CTO, SignalFx. “Leveraging a common observability tool for all teams can decrease training burden, allow reuse, and improve quality.”

The SignalFx cloud monitoring platform is driven by streaming analytics and a unique NoSample tail-based distributed tracing architecture. Users monitor their services with high-resolution 1-second metrics and observe every single transaction—not just a small sample like legacy platforms. Problems are detected instantly and operators receive meaningful, accurate alerts in seconds. Findings are filtered in real-time to help developers rapidly spot issues and initiate fixes before they impact customers.

With Service Bureau, SignalFx offers the most complete set of capabilities for enabling monitoring-as-a-service. Thanks to Service Bureau, DevOps teams across the organization using SignalFx can leverage a single centrally managed observability platform for shared visibility and shared best practices across services. New Service Bureau functionality includes:

- Mirrored Dashboards — Enables the broad distribution of dashboards implementing best practices by letting users create “mirrors” of them. Updates to mirrored dashboards automatically propagate to every mirrored copy, maintaining consistency and preventing the buildup of redundant or outdated content, while allowing local customization by self-service teams.

- Metric Finder — Makes metric searches in SignalFx more predictable, relevant, and context-aware. Users can search for a metric using any combination of names or attributes that they know, easily filter down to their chosen metric, and start building charts and dashboards right from the list of search results.

- Terraform provider — SignalFx now has an official Terraform provider that codifies SignalFx detectors, charts, and dashboards, thereby making it easy to programmatically create, manage, and version control them via monitoring-as-code.

“SignalFx’s streaming architecture means teams will be able to quickly and accurately react to change,” Watson said. “Service Bureau functionality means that organizations can track usage and ensure efficiency. Usage metrics and quotas can prevent surprises. Daily reports can unlock ‘show back’ reporting so teams don’t accrue unused, expensive metrics.”

Earlier this quarter SignalFx also announced additional product capabilities:

- Calendar Window Analytics — In April, SignalFx announced the ability to calculate analytics functions over calendar windows, unlocking the power of real-time metrics for both DevOps needs and business KPIs.

- New integration with Amazon Web Services — In March, SignalFx strengthened its relationship with AWS by adding support for AWS App Mesh, enabling visibility into microservices and service mesh deployments without any changes to application code.

- Integrations with Google Cloud for Cloud-Native applications — In April, SignalFx announced new integrations for Google Cloud Functions, Istio on GKE, Knative, Cloud Run, and Cloud Run on GKE.

- — In April, SignalFx announced the integration of SignalFx’s real-time cloud monitoring platform with Atlassian’s Opsgenie incident management platform.

Share this

The Latest

October 17, 2019

As the data generated by organizations grows, APM tools are now required to do a lot more than basic monitoring of metrics. Modern data is often raw and unstructured and requires more advanced methods of analysis. The tools must help dig deep into this data for both forensic analysis and predictive analysis. To extract more accurate and cheaper insights, modern APM tools use Big Data techniques to store, access, and analyze the multi-dimensional data ...

October 16, 2019

Modern enterprises are generating data at an unprecedented rate but aren't taking advantage of all the data available to them in order to drive real-time, actionable insights. According to a recent study commissioned by Actian, more than half of enterprises today are unable to efficiently manage nor effectively use data to drive decision-making ...

October 15, 2019

According to a study by Forrester Research, an enhanced UX design can increase the conversion rate by 400%. If UX has become the ultimate arbiter in determining the success or failure of a product or service, let us first understand what UX is all about ...

October 10, 2019

The requirements of an APM tool are now much more complex than they've ever been. Not only do they need to trace a user transaction across numerous microservices on the same system, but they also need to happen pretty fast ...

October 09, 2019

Performance monitoring is an old problem. As technology has advanced, we've had to evolve how we monitor applications. Initially, performance monitoring largely involved sending ICMP messages to start troubleshooting a down or slow application. Applications have gotten much more complex, so this is no longer enough. Now we need to know not just whether an application is broken, but why it broke. So APM has had to evolve over the years for us to get there. But how did this evolution take place, and what happens next? Let's find out ...

October 08, 2019

There are some IT organizations that are using DevOps methodology but are wary of getting bogged down in ITSM procedures. But without at least some ITSM controls in place, organizations lose their focus on systematic customer engagement, making it harder for them to scale ...

October 07, 2019
OK, I admit it. "Service modeling" is an awkward term, especially when you're trying to frame three rather controversial acronyms in the same overall place: CMDB, CMS and DDM. Nevertheless, that's exactly what we did in EMA's most recent research: <span style="font-style: italic;">Service Modeling in the Age of Cloud and Containers</span>. The goal was to establish a more holistic context for looking at the synergies and differences across all these areas ...
October 03, 2019

If you have deployed a Java application in production, you've probably encountered a situation where the application suddenly starts to take up a large amount of CPU. When this happens, application response becomes sluggish and users begin to complain about slow response. Often the solution to this problem is to restart the application and, lo and behold, the problem goes away — only to reappear a few days later. A key question then is: how to troubleshoot high CPU usage of a Java application? ...

October 02, 2019

Operations are no longer tethered tightly to a main office, as the headquarters-centric model has been retired in favor of a more decentralized enterprise structure. Rather than focus the business around a single location, enterprises are now comprised of a web of remote offices and individuals, where network connectivity has broken down the geographic barriers that in the past limited the availability of talent and resources. Key to the success of the decentralized enterprise model is a new generation of collaboration and communication tools ...

October 01, 2019

To better understand the AI maturity of businesses, Dotscience conducted a survey of 500 industry professionals. Research findings indicate that although enterprises are dedicating significant time and resources towards their AI deployments, many data science and ML teams don't have the adequate tools needed to properly collaborate on, build and deploy AI models efficiently ...