Skip to main content

The Anatomy of APM – 4 Foundational Elements to a Successful Strategy

Larry Dragich

By embracing End-User-Experience (EUE) measurements as a key vehicle for demonstrating productivity, you build trust with your constituents in a very tangible way. The translation of IT metrics into business meaning (value) is what APM is all about.

The goal here is to simplify a complicated technology space by walking through a high-level view within each core element. I’m suggesting that the success factors in APM adoption center around the EUE and the integration touch points with the Incident Management process.

When looking at APM at 20,000 feet, four foundational elements come into view:

- Top Down Monitoring (RUM)


- Bottom Up Monitoring (Infrastructure)


- Incident Management Process (ITIL)


- Reporting (Metrics)


Top Down Monitoring

Top Down Monitoring is also referred to as Real-time Application Monitoring that focuses on the End-User-Experience. It has two has two components, Passive and Active. Passive monitoring is usually an agentless appliance which leverages network port mirroring. This low risk implementation provides one of the highest values within APM in terms of application visibility for the business.

Active monitoring, on the other hand, consists of synthetic probes and web robots which help report on system availability and predefined business transactions. This is a good complement when used with passive monitoring to help provide visibility on application health during off peak hours when transaction volume is low.

Bottom Up Monitoring

Bottom Up Monitoring is also referred to as Infrastructure Monitoring which usually ties into an operations manager tool and becomes the central collection point where event correlation happens. Minimally, at this level up/down monitoring should be in place for all nodes/servers within the environment. System automation is the key component to the timeliness and accuracy of incidents being created through the Trouble Ticket Interface.

Incident Management Process

The Incident Management Process as defined in ITIL is a foundational pillar to support Application Performance Management (APM). In our situation, Incident Management, Problem Management, and Change Management processes were already established in the culture for a year prior to us beginning to implement the APM strategies.

A look into ITIL's Continual Service Improvement (CSI) model and the benefits of Application Performance Management indicates they are both focused on improvement, with APM defining toolsets that tie together specific processes in Service Design, Service Transition, and Service Operation.

Reporting Metrics

Capturing the raw data for analysis is essential for an APM strategy to be successful. It is important to arrive at a common set of metrics that you will collect and then standardize on a common view on how to present the real-time performance data.

Your best bet: Alert on the Averages and Profile with Percentiles. Use 5 minute averages for real-time performance alerting, and percentiles for overall application profiling and Service Level Management.

Conclusion

As you go deeper in your exploration of APM and begin sifting through the technical dogma (e.g. transaction tagging, script injection, application profiling, stitching engines, etc.) for key decision points, take a step back and ask yourself why you're doing this in the first place: To translate IT metrics into an End-User-Experience that provides value back to the business.

If you have questions on the approach and what you should focus on first with APM, see Prioritizing Gartner's APM Model for insight on some best practices from the field.

You can contact Larry on LinkedIn

Larry Dragich of AAA Joins The BSM Blog

For a high-level view of a much broader technology space refer to slide show on BrightTALK.com which describes “The Anatomy of APM - webcast” in more context.

The Latest

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...

An overwhelming majority of IT leaders (95%) believe the upcoming wave of AI-powered digital transformation is set to be the most impactful and intensive seen thus far, according to The Science of Productivity: AI, Adoption, And Employee Experience, a new report from Nexthink ...

Overall outage frequency and the general level of reported severity continue to decline, according to the Outage Analysis 2025 from Uptime Institute. However, cyber security incidents are on the rise and often have severe, lasting impacts ...

In March, New Relic published the State of Observability for Media and Entertainment Report to share insights, data, and analysis into the adoption and business value of observability across the media and entertainment industry. Here are six key takeaways from the report ...

The Anatomy of APM – 4 Foundational Elements to a Successful Strategy

Larry Dragich

By embracing End-User-Experience (EUE) measurements as a key vehicle for demonstrating productivity, you build trust with your constituents in a very tangible way. The translation of IT metrics into business meaning (value) is what APM is all about.

The goal here is to simplify a complicated technology space by walking through a high-level view within each core element. I’m suggesting that the success factors in APM adoption center around the EUE and the integration touch points with the Incident Management process.

When looking at APM at 20,000 feet, four foundational elements come into view:

- Top Down Monitoring (RUM)


- Bottom Up Monitoring (Infrastructure)


- Incident Management Process (ITIL)


- Reporting (Metrics)


Top Down Monitoring

Top Down Monitoring is also referred to as Real-time Application Monitoring that focuses on the End-User-Experience. It has two has two components, Passive and Active. Passive monitoring is usually an agentless appliance which leverages network port mirroring. This low risk implementation provides one of the highest values within APM in terms of application visibility for the business.

Active monitoring, on the other hand, consists of synthetic probes and web robots which help report on system availability and predefined business transactions. This is a good complement when used with passive monitoring to help provide visibility on application health during off peak hours when transaction volume is low.

Bottom Up Monitoring

Bottom Up Monitoring is also referred to as Infrastructure Monitoring which usually ties into an operations manager tool and becomes the central collection point where event correlation happens. Minimally, at this level up/down monitoring should be in place for all nodes/servers within the environment. System automation is the key component to the timeliness and accuracy of incidents being created through the Trouble Ticket Interface.

Incident Management Process

The Incident Management Process as defined in ITIL is a foundational pillar to support Application Performance Management (APM). In our situation, Incident Management, Problem Management, and Change Management processes were already established in the culture for a year prior to us beginning to implement the APM strategies.

A look into ITIL's Continual Service Improvement (CSI) model and the benefits of Application Performance Management indicates they are both focused on improvement, with APM defining toolsets that tie together specific processes in Service Design, Service Transition, and Service Operation.

Reporting Metrics

Capturing the raw data for analysis is essential for an APM strategy to be successful. It is important to arrive at a common set of metrics that you will collect and then standardize on a common view on how to present the real-time performance data.

Your best bet: Alert on the Averages and Profile with Percentiles. Use 5 minute averages for real-time performance alerting, and percentiles for overall application profiling and Service Level Management.

Conclusion

As you go deeper in your exploration of APM and begin sifting through the technical dogma (e.g. transaction tagging, script injection, application profiling, stitching engines, etc.) for key decision points, take a step back and ask yourself why you're doing this in the first place: To translate IT metrics into an End-User-Experience that provides value back to the business.

If you have questions on the approach and what you should focus on first with APM, see Prioritizing Gartner's APM Model for insight on some best practices from the field.

You can contact Larry on LinkedIn

Larry Dragich of AAA Joins The BSM Blog

For a high-level view of a much broader technology space refer to slide show on BrightTALK.com which describes “The Anatomy of APM - webcast” in more context.

The Latest

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...

An overwhelming majority of IT leaders (95%) believe the upcoming wave of AI-powered digital transformation is set to be the most impactful and intensive seen thus far, according to The Science of Productivity: AI, Adoption, And Employee Experience, a new report from Nexthink ...

Overall outage frequency and the general level of reported severity continue to decline, according to the Outage Analysis 2025 from Uptime Institute. However, cyber security incidents are on the rise and often have severe, lasting impacts ...

In March, New Relic published the State of Observability for Media and Entertainment Report to share insights, data, and analysis into the adoption and business value of observability across the media and entertainment industry. Here are six key takeaways from the report ...