Skip to main content

Top 5 Service Performance Challenges in the Cloud

What do Amazon EC2, Microsoft Azure, and Google Apps have in common? They’re all cloud computing services, of course. But they share something else in common — each of these clouds has experienced periods of outages and slowdowns, impacting businesses worldwide that increasingly rely on the cloud for critical operations. And while there’s a great deal of publicity when these prominent public clouds suffer outages, it’s no less damaging to the business when an IT department’s private cloud goes off-line, even if it doesn’t make the news. It’s no wonder that according to analyst firm IDC, two of the top three concerns that CIO’s have about cloud computing are performance and availability.

Moving services to the cloud promises to deliver increased agility at a lower cost − but there are many risks along the way and greater complexity to manage when you get there. The following are five critical hurdles that you may face when implementing and operating a private cloud or hybrid cloud and how you can overcome them.

1. Will it work? How can you tell which applications are suitable for cloud and plan a successful migration?

Not every application is suitable for the cloud. And sometimes one part of an application is cloud-ready while other components are not. You need to identify the most suitable applications and components for migration, identify potential problems such as chattiness and latency that are amplified in the cloud, and create a performance baseline that you can test against after migration. With a clear picture of service dependencies and infrastructure usage, you can create a checklist that will ensure a complete and successful migration.

2. Performance – If you don’t know which physical servers your application is running on, how do you find server-related root causes when performance issues arise?

In fully-dedicated environments, we sometimes use infrastructure metrics and events to diagnose performance issues. But inferring application performance from tier-based statistics becomes challenging – if not impossible – when applications share dynamically allocated physical resources. To manage application performance in the cloud, you need a real-time topological map of service delivery across all tiers. Since the landscape is always changing, it’s essential that the dependency map is dynamically generated and automatically updated for every single transaction and service instance.

3. Chargeback – How do you know how much CPU your application is consuming in order to choose an appropriate chargeback model or verify your bills?

IT needs a new paradigm for assessing resource consumption in order to transition from a resource-focused cost-center to a business-service-focused profit-center. But traditional chargeback and APM tools do not collect resource utilization per transaction to enable business-aligned costing and chargeback paradigms. For the cloud, you need a solution that monitors consumption for every service across multiple applications and tiers, so you can accurately cost services, decide on appropriate chargeback schemes, and tune applications and infrastructure for better resource utilization and lower cost.

4. Not aligned with the business – How do you ensure that services are allocated according to business priority?

Clouds offer us new levels of dynamic resource allocation. However, to ensure that SLAs in the cloud are met, you must be able to prioritize the allocation of resources based on measurements of real end-user performance and an accurate view of where additional resources can truly alleviate SLA risks. To make that possible, you need a clear picture of resource consumption at the transaction level and business intelligence about the impact of each infrastructure tier on performance. Provisioning based on business priorities becomes even more critical as cloud architectures transition to a dynamic auto-provisioning model.

5. Over-provisioning – How can you right-size capacity and prevent over-provisioning that undercuts ROI?

Sharing IT infrastructure can be more efficient and cost-effective – assuming you have an accurate picture of resource usage for each service, an understanding of how that allocation affects SLA compliance, and the ability to prioritize resource allocation. In the cloud, a complete history of all transaction instances, including precise resource utilization metrics and SLAs, is essential for making intelligent decisions about provisioning. And with an accurate picture of resource consumption for each business transaction, cloud owners can plan future capacity requirements accurately.

Russell Rothstein is Founder and CEO, IT Central Station.

Hot Topics

The Latest

As businesses increasingly rely on high-performance applications to deliver seamless user experiences, the demand for fast, reliable, and scalable data storage systems has never been greater. Redis — an open-source, in-memory data structure store — has emerged as a popular choice for use cases ranging from caching to real-time analytics. But with great performance comes the need for vigilant monitoring ...

Kubernetes was not initially designed with AI's vast resource variability in mind, and the rapid rise of AI has exposed Kubernetes limitations, particularly when it comes to cost and resource efficiency. Indeed, AI workloads differ from traditional applications in that they require a staggering amount and variety of compute resources, and their consumption is far less consistent than traditional workloads ... Considering the speed of AI innovation, teams cannot afford to be bogged down by these constant infrastructure concerns. A solution is needed ...

AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...

Top 5 Service Performance Challenges in the Cloud

What do Amazon EC2, Microsoft Azure, and Google Apps have in common? They’re all cloud computing services, of course. But they share something else in common — each of these clouds has experienced periods of outages and slowdowns, impacting businesses worldwide that increasingly rely on the cloud for critical operations. And while there’s a great deal of publicity when these prominent public clouds suffer outages, it’s no less damaging to the business when an IT department’s private cloud goes off-line, even if it doesn’t make the news. It’s no wonder that according to analyst firm IDC, two of the top three concerns that CIO’s have about cloud computing are performance and availability.

Moving services to the cloud promises to deliver increased agility at a lower cost − but there are many risks along the way and greater complexity to manage when you get there. The following are five critical hurdles that you may face when implementing and operating a private cloud or hybrid cloud and how you can overcome them.

1. Will it work? How can you tell which applications are suitable for cloud and plan a successful migration?

Not every application is suitable for the cloud. And sometimes one part of an application is cloud-ready while other components are not. You need to identify the most suitable applications and components for migration, identify potential problems such as chattiness and latency that are amplified in the cloud, and create a performance baseline that you can test against after migration. With a clear picture of service dependencies and infrastructure usage, you can create a checklist that will ensure a complete and successful migration.

2. Performance – If you don’t know which physical servers your application is running on, how do you find server-related root causes when performance issues arise?

In fully-dedicated environments, we sometimes use infrastructure metrics and events to diagnose performance issues. But inferring application performance from tier-based statistics becomes challenging – if not impossible – when applications share dynamically allocated physical resources. To manage application performance in the cloud, you need a real-time topological map of service delivery across all tiers. Since the landscape is always changing, it’s essential that the dependency map is dynamically generated and automatically updated for every single transaction and service instance.

3. Chargeback – How do you know how much CPU your application is consuming in order to choose an appropriate chargeback model or verify your bills?

IT needs a new paradigm for assessing resource consumption in order to transition from a resource-focused cost-center to a business-service-focused profit-center. But traditional chargeback and APM tools do not collect resource utilization per transaction to enable business-aligned costing and chargeback paradigms. For the cloud, you need a solution that monitors consumption for every service across multiple applications and tiers, so you can accurately cost services, decide on appropriate chargeback schemes, and tune applications and infrastructure for better resource utilization and lower cost.

4. Not aligned with the business – How do you ensure that services are allocated according to business priority?

Clouds offer us new levels of dynamic resource allocation. However, to ensure that SLAs in the cloud are met, you must be able to prioritize the allocation of resources based on measurements of real end-user performance and an accurate view of where additional resources can truly alleviate SLA risks. To make that possible, you need a clear picture of resource consumption at the transaction level and business intelligence about the impact of each infrastructure tier on performance. Provisioning based on business priorities becomes even more critical as cloud architectures transition to a dynamic auto-provisioning model.

5. Over-provisioning – How can you right-size capacity and prevent over-provisioning that undercuts ROI?

Sharing IT infrastructure can be more efficient and cost-effective – assuming you have an accurate picture of resource usage for each service, an understanding of how that allocation affects SLA compliance, and the ability to prioritize resource allocation. In the cloud, a complete history of all transaction instances, including precise resource utilization metrics and SLAs, is essential for making intelligent decisions about provisioning. And with an accurate picture of resource consumption for each business transaction, cloud owners can plan future capacity requirements accurately.

Russell Rothstein is Founder and CEO, IT Central Station.

Hot Topics

The Latest

As businesses increasingly rely on high-performance applications to deliver seamless user experiences, the demand for fast, reliable, and scalable data storage systems has never been greater. Redis — an open-source, in-memory data structure store — has emerged as a popular choice for use cases ranging from caching to real-time analytics. But with great performance comes the need for vigilant monitoring ...

Kubernetes was not initially designed with AI's vast resource variability in mind, and the rapid rise of AI has exposed Kubernetes limitations, particularly when it comes to cost and resource efficiency. Indeed, AI workloads differ from traditional applications in that they require a staggering amount and variety of compute resources, and their consumption is far less consistent than traditional workloads ... Considering the speed of AI innovation, teams cannot afford to be bogged down by these constant infrastructure concerns. A solution is needed ...

AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...