Top Recommendations to Ensure Performance for the IoT - Part 2
November 16, 2016
Share this

The Internet of Things (IoT) is in position to become one of the greatest application performance management challenges faced by IT. APMdigest asked experts across the industry – including analysts, consultants and vendors – for their recommendations on how to ensure performance for IoT applications. Part 2 covers data and analytics.

Start with Top Recommendations to Ensure Performance for the IoT - Part 1

7. REAL-TIME DATA

The IoT is still too new and the technologies and protocols too diverse to ensure anything, let alone performance – but that doesn't mean you can't get started. The first step: realizing the IoT operates in real-time. Any performance management for the IoT will have to deal with an ongoing deluge of real-time data.
Jason Bloomberg
President, Intellyx

User engagement is fundamentally changing. The broad scale onset of smart sensors, voice interaction, AR/VR is creating an increasingly connected world where customer engagement spans across digital and physical touch points. To ensure optimal business outcomes, it is imperative for businesses to measure near-live time performance of software across devices, connecting microservices, and the clouds supporting the uniform experience.
Prathap Dendi
GM, Emerging Technologies, AppDynamics

We scaled orders of magnitude when we transformed from Client-Server to Internet. This caused dramatic changes how we built, tested, measured, and maintained our systems. With IoT, it's about to happen again. Sensors and tags aren't clients. They're emitters. IoT will demand capture, analytics, and querying millions of data points an hour, in real time. Anything less would be like claiming data that fits on a laptop is a big data problem.
Eric Proegler
Product Manager, SOASTA

Big Data flowing from IoT-connected devices helps organizations be more responsive, adaptive and competitive in a constantly changing business environment. The ability to analyze massive volumes of data as they are collected allows businesses to predict and respond to trends with superior accuracy and precision. Data becomes more actionable and reliable the closer it is analyzed to real-time, and for this reason, organizations cannot afford bottlenecks anywhere in the IoT data collection and analysis process.
Mehdi Daoudi
CEO and Founder, Catchpoint

8. ADVANCED ANALYTICS

People wrongly assume that connectivity is the biggest challenge facing IoT initiatives, when in fact, this is getting easier everyday. The real challenge isn't accessing data, it's gaining knowledge from the data. The more devices we connect, the more noise we create, and — effectively — the more garbage we churn out. Without establishing an intelligent way to make sense of this information, we're simply going to drown in noise.
Assaf Resnick
CEO, BigPanda

Advanced analytics is not only critical to maintaining IoT performance, it also influences business, technology and investment decisions. The best way to help IT teams learn what is happening with edge computing and IoT — such as what devices are interacting with others, what levels of performance are normal, and what are anomalies—is to gather operational data from these log files, and use advanced analytics to move from reactive to proactive problem solving. Log files are a source of the truth and advanced analytics can be used to identify pattern, decrease mean time to identification and predict potential issues before they happen. By understanding critical usage system trends, proactive decisions can be made that positively influence the business and ensure the best customer experiences.
Ramin Sayar, CEO of Sumo Logic
Ramin Sayar
President & CEO, Sumo Logic

9. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

IoT is going to make Big Data into Giant Data. It's the next level of scale, but what will the impact be? Companies will no longer be able to manage the hundreds of millions of connected devices … you simply can't hire enough people to chase down that many alarms. This is where AI and machine learning becomes a "must have" for IT operations tools. AI learns what is normal and abnormal behavior, then will be able to heal itself before an anomaly causes an incident. AI and machine learning will power the growth of IoT and vice versa.
JF Huard, Ph.D.
Founder and CTO, Perspica

10. DATA BATCHES

One of the biggest challenges of building an IoT application is collating the data from various sources. But when an application makes many repetitive requests to different IoT devices to obtain data, it can slow app performance. As such, the best way to ensure performance of IoT applications is to consolidate data into batches. Data can be pushed to the application at low latency in small chunks, as it becomes available. At the same time, deploying an application through a web browser makes it's usable across an extremely wide variety of devices.
Daniel Gallo
Sales Engineer, Sencha

11. ADHERE TO LAWS OF DATA GRAVITY

IoT is a big contributor to Big Data, generating massive real-time data streams. Therefore, in order to build high-performing IoT applications, it's important to adhere to the laws of data gravity. Data gravity refers to the nature of data and its ability to attract additional applications and services. Developers must bring their applications as close to the (IoT) data as possible, versus the other way around. Cloud and open, extensible platforms are absolutely key to doing this in a quick and cost-effective manner.
Roald Kruit
Co-Founder, Mendix

12. LINK DATA TO BUSINESS GOALS

Organizations that link their IoT sensor data to a specific business process or target ensure that their results will gain visibility with the most important IoT champions in an organization – Operational Teams. These OT groups are focused on the delivery and improvement of the operational activities associated with an organization. For energy companies, this takes the form of efficient and predictable distributed energy production. By using sensor information associated with solar collection and daylight hours, or wind speed and direction associated with turbine performance, an IoT initiative provides information directly to the OT team operating the distributed power production and managing the efficient use of non-renewal energy sources. With this context, IoT initiatives link directly to operation productivity and OT team goals for maximum value.
John L Myers
Managing Research Director, Enterprise Management Associates (EMA)

Read Top Recommendations to Ensure Performance for the IoT - Part 3, covering app design and development.

Share this

The Latest

September 19, 2017

IT professionals tend to go above and beyond the scope of their core responsibilities as the changing business landscape demands more of their attention, both inside and outside of the office, according to the Little-Known Facts survey conducted by SolarWinds in honor of IT Professionals Day ...

September 18, 2017

Digital video consumption is viral and, according to a new study released by IBM and International Broadcasting Convention (IBC), more than half of the 21,000 consumers surveyed are using mobiles every day to watch streaming videos, and that number is expected to grow 45 percent in the next three years ...

September 15, 2017

No technology that touches more than one IT stakeholder, no matter how good and how transformative, can deliver its potential without attention to leadership, process considerations and dialog. In this blog, I'd like to share effective strategies for AIA adoption ...

September 14, 2017

Enterprise IT environments are becoming more heterogeneous and complex, with fragmentation permeating cloud infrastructure, tooling and culture, according to a survey recently conducted by IOD Cloud Technologies Research in partnership with Cloudify ...

September 12, 2017

One area that enables enterprises to reduce complexity and streamline operations is their virtual desktop infrastructure (VDI). Virtualization is a linchpin of digital transformation and effectively optimizing an enterprise's VDI is essential to moving forward with digital technologies. Delivering the best possible VDI performance means taking a fresh look at what "desktop" means today. The endpoint, or desktop, now can be a physical thin client, a software-defined thin client, a traditional laptop, a phone or tablet. To reduce operational waste and achieve better performance across the desktop environment, consider these five actions ...

September 11, 2017

In incident management, we often overlook the simple things in favor of trying to do too much, too soon. Why not make sure we've done the fundamentals properly? ...

September 08, 2017
For our Advanced IT Analytics (AIA) Buyer's Guide, we interviewed more than 20 deployments to help us better assess vendor strengths and limitations. So given the abundance of riches to work with, I've decided to illustrate several of the more prominent AIA benefit categories with actual real-world comments ...
September 07, 2017

The Input/Output Operations per Second (I/O) capabilities of modern computer systems are truly a modern wonder. Yet no matter how powerful the processors, no matter how many cores, how perfectly formed the bus architecture, or how many flash modules are added, somehow it never seems to be enough ...

September 06, 2017

By taking advantage of performance monitoring, IT and business decision makers can gain better visibility into their cloud and application performance. Dedicated performance monitoring has become essential for providing visibility into all areas of application performance and keeping the business running optimally ...

September 01, 2017

There may be no more critical emerging technology for IT organizations in the digital age than advanced IT analytics (AIA) — most commonly called “operational analytics.” It is with this in mind that EMA is launching what we believe is the first ever buyer's guide for AIA adoption ...