The Case for Putting AI and ML to Work in the IT Department
February 23, 2018

Phil Tee
Moogsoft

Share this

With 2017 behind us, the news cycle is still stirring up stories on artificial intelligence (AI) and machine learning (ML), but has some of the excitement worn off? We're witnessing a surge of activity in the space, with unexpected names like Ferrari throwing their hat into the ring, or some notable failures like a smart suitcase fleeing it's handler. Can actual examples of AI in the enterprise rise among some of the noise that's inundating the market and hindering the credibility of everyone?

What Comes Up, Must Come Down

This has happened before. Emergent technology faces a gauntlet, and Gartner's famous Hype Cycle model can help illustrate this point.

First, technology makes waves with a “trigger” that garners media attention or investor buy-in. This usually creates an overly-optimistic projection of what's possible, which aligns with Gartner's “peak of inflated expectations.”

At the top of that hill is where people start to question whether the technology that was introduced is truly capable of delivering what it claims. This is where harsh criticism hits from multiple angles, and the negativity can be so strong that some companies or technologies actually fail at this point.

Yet, if the technology weathers the storm, there is now a time for level-setting and a more realistic understanding of the market. We're seeing that artificial intelligence and machine learning are two technologies at various points in the hype cycle, but both will follow a similar path.

What's unique here, however, is that, due to the nature of AI and ML, there is a second failure option. With this type of technology, results are rapid and it is generally not possible to determine why a specific result was generated. Another frustration is that the speed of execution usually creates the inability to troubleshoot failures in detail. When put into a real-world environment outside of general deployment and testing, potential problems that might not have been obvious in the lab start to appear.

We can point to some failures — like a smart fridge misreading expiration dates or smart thermostats mistaking temperature readings — but these are minor compared to what else can happen. We've seen this in racist algorithms or facial-recognition incorrectly misidentifying someone at the scene of a riot.

But There is Proof it Can Work, Just Check Out the IT Department

So, is AI and ML worth the hassle? Has it hit rock bottom on the hype cycle without anyway to pick itself back up?

AIOps has a huge potential to transform IT and help streamline enterprise operations

Despite the obstacles, AI is proving itself each day and is key for a better future. Experts in the field are taking note of what works, and we've found that, to be successful, AI systems need data. Both quantity and quality matter, as they need to be trained with the information to make accurate assessments. A challenge today is not that data isn't available, but at times it's difficult to access, analyze and organize … yet the IT department has found itself an ideal center of operation by using the technology for “AIOPs.”

IT infrastructure generates data by the second, and while formats are diverse, data is already machine readable. Thankfully, it turns out that computers are already translating information from one representation to another.

Once this data is applied to an AI or ML system, it can apply various algorithms to try to make sense of them. This means it's seeking what information is significant or what is interconnected in the vast resources — something that an IT team currently does manually at the cost of countless man hours. AI and ML systems can take these huge swaths of data and order them in near real-time, focusing IT teams on what is truly mission critical. Not only does this free up valuable man hours of the IT team, but it elevates them to expand their daily work into new activities that can enhance the overall agility of the enterprise, rather than acting as a constant ticket desk.

AIOps has a huge potential to transform IT and help streamline enterprise operations, by presenting human specialists with actionable events, helping them collaborate more effectively, and learning and improving over time.

Phil Tee is CEO of Moogsoft
Share this

The Latest

June 21, 2018

There’s no doubt that digital innovations are transforming industries, and business leaders are left with little or no choice – either embrace digital processes or suffer the consequences and get left behind ...

June 20, 2018

Looking ahead to the rest of 2018 and beyond, it seems like many of the trends that shaped 2017 are set to continue, with the key difference being in how they evolve and shift as they become mainstream. Five key factors defining the progression of the digital transformation movement are ...

June 19, 2018

Companies using cloud technologies to automate their legacy applications and IT operations processes are gaining a significant competitive advantage over those behind the curve, according to a new report from Capgemini and Sogeti, The automation advantage: Making legacy IT keep pace with the cloud ...

June 18, 2018

It's every system administrator's worse nightmare. An attempt to restore a database results in empty files, and there is no way to get the data back, ever. Here are five simple tips for keeping things running smoothly and minimizing risk ...

June 15, 2018

When it comes to their own companies, 50% of IT stakeholders think they are leaders and will disrupt, while 50% feel they are behind and will be disrupted by the competition in 2018, according to a new survey of IT stakeholders from Alfresco Software and Dimensional Research. The report, Digital Disruption: Disrupt or Be Disrupted, is a wake-up call for the C-suite ...

June 14, 2018

If you are like most IT professionals, which I am sure you are, you are dealing with a lot issues. Typical issues include ...

June 13, 2018

The importance of artificial intelligence and machine learning for customer insight, product support, operational efficiency, and capacity planning are well-established, however, the benefits of monitoring data in those use cases is still evolving. Three main factors obscuring the benefits of data monitoring are the infinite volume of data, its diversity, and inconsistency ...

June 11, 2018

Imagine this: after a fantastic night's sleep, you walk into the office ready to attack the day. You sit down at your desk ready to go, and your computer starts acting up. You call the help desk, but all IT can do is create a ticket for you and transfer it to another team to help you as soon as possible ...

June 08, 2018

As many IT workers develop greater technology skills and apply them to advance their careers, many digital workers in non-IT departments believe their CIO is out of touch with their technology needs. A Gartner, Inc. survey found that less than 50 percent of workers (both IT and non-IT) believe their CIOs are aware of digital technology problems that affect them ...

June 07, 2018

CIOs of 73% of organizations say the need for speed in digital innovation is putting customer experience at risk, according to an independent global survey of 800 CIOs commissioned by Dynatrace ...