Using Machine Learning Analytics to Deliver Service Levels
September 21, 2016

Jerry Melnick
SIOS Technology

Share this

While the layers of abstraction created in virtualized environments afford numerous advantages, they can also obscure how the virtual resources are best allocated and how physical resources are performing. This can make maintaining optimal application performance a never-ending exercise in trial-and-error.

This post highlights some of the challenges encountered when using traditional monitoring and analytics tools, and describes how machine learning, as a next-generation analytics platform, provides a better way to meet SLAs by finding and fixing issues before they become performance problems. A future post will describe how machine learning analytics can also be used to allocate resources for optimal performance and cost-saving efficiency.

Most IT departments identify performance problems with tools that monitor a variety of discrete events against preset thresholds. For example they set a specific threshold for CPU utilization. Whenever that threshold is exceeded, the tool fires off alerts. But the use of thresholds presents several challenges. They do not account for the interrelated nature of resources in virtualized environments, where a change to or in one can have a significant impact on another. Such interrelationships exist both within and across silos. Without a complete understanding of the environment across silos, users of threshold-based tools frequently discover that their attempts to solve a problem have simply moved it to a different silo.

Thresholds often generate "alert storms" of meaningless data and miss important correlations that might indicate a severe problem exists. They are ineffective in detecting the symptoms of subtle issues that may indicate a significant imminent problem such as "noisy neighbors" or datastore latency issues. These subtle issues may not exceed a threshold related to the root cause or may exceed a threshold in short, random intervals, producing alerts that are frequently lost amid the "noise" of alert storms.

Even the so-called dynamic thresholds cannot accommodate the constant change in dynamic environments and, as a result, require significant ongoing IT intervention. And finally, while they may alert IT to an issue, they rarely provide sufficiently actionable information for resolving it. The exponential growth in the size and complexity of virtual environments has outstripped the ability of IT staff to set, manage, and continuously adjust threshold-based tools effectively. The time for an automated solution has come.

Advanced machine learning-based analytics software overcomes these and other challenges by continuously learning the many complex behaviors and interactions among interrelated objects – CPU, storage, network, applications – across the infrastructure. Unlike threshold-based solutions, this growing knowledge enables machine learning-based IT analytics solutions to provide a highly accurate means of identifying the root cause(s) of performance problems and making specific recommendations for resolving them cost-effectively.

This ability to aggregate, normalize, and then correlate and analyze hundreds of thousands of data points from different monitoring and management systems enable machine learning analytics solutions to transform massive volumes of data into meaningful insights across applications, servers and hosts, and storage and network infrastructures.

As it gathers and analyzes this wealth of data, the MLA system learns what constitutes normal behaviors, and it is this baseline that gives the system the ability to detect anomalies and find root causes automatically.

In addition to identifying root causes, advance machine learning based analytics solutions are able to simulate and predict the impact of making certain changes in resources and their allocations, which can be particularly useful for optimizing resource utilization and planning for expansion. This capability can also be useful for assessing if there is adequate capacity to handle a partial or complete failover. And these are topics worthy of a deeper dive in a future post.

Jerry Melnick is President and CEO of SIOS Technology.

Share this

The Latest

June 20, 2018

Looking ahead to the rest of 2018 and beyond, it seems like many of the trends that shaped 2017 are set to continue, with the key difference being in how they evolve and shift as they become mainstream. Five key factors defining the progression of the digital transformation movement are ...

June 19, 2018

Companies using cloud technologies to automate their legacy applications and IT operations processes are gaining a significant competitive advantage over those behind the curve, according to a new report from Capgemini and Sogeti, The automation advantage: Making legacy IT keep pace with the cloud ...

June 18, 2018

It's every system administrator's worse nightmare. An attempt to restore a database results in empty files, and there is no way to get the data back, ever. Here are five simple tips for keeping things running smoothly and minimizing risk ...

June 15, 2018

When it comes to their own companies, 50% of IT stakeholders think they are leaders and will disrupt, while 50% feel they are behind and will be disrupted by the competition in 2018, according to a new survey of IT stakeholders from Alfresco Software and Dimensional Research. The report, Digital Disruption: Disrupt or Be Disrupted, is a wake-up call for the C-suite ...

June 14, 2018

If you are like most IT professionals, which I am sure you are, you are dealing with a lot issues. Typical issues include ...

June 13, 2018

The importance of artificial intelligence and machine learning for customer insight, product support, operational efficiency, and capacity planning are well-established, however, the benefits of monitoring data in those use cases is still evolving. Three main factors obscuring the benefits of data monitoring are the infinite volume of data, its diversity, and inconsistency ...

June 11, 2018

Imagine this: after a fantastic night's sleep, you walk into the office ready to attack the day. You sit down at your desk ready to go, and your computer starts acting up. You call the help desk, but all IT can do is create a ticket for you and transfer it to another team to help you as soon as possible ...

June 08, 2018

As many IT workers develop greater technology skills and apply them to advance their careers, many digital workers in non-IT departments believe their CIO is out of touch with their technology needs. A Gartner, Inc. survey found that less than 50 percent of workers (both IT and non-IT) believe their CIOs are aware of digital technology problems that affect them ...

June 07, 2018

CIOs of 73% of organizations say the need for speed in digital innovation is putting customer experience at risk, according to an independent global survey of 800 CIOs commissioned by Dynatrace ...

June 05, 2018

Digital Transformation requires more than just the latest technology, it's a mindset that iterative change is on the way and should be embraced. This also requires us to factor in the people and process parts of the equation and find ways to measure the end-user-experience (EUE). One way to do this is to sponsor an Application Performance Monitoring (APM) initiative that can provide visibility to the business, help communicate the progress, and highlight the impacts to the organization. ...