Using Machine Learning Analytics to Help Meet SLAs
October 11, 2016

Jerry Melnick
SIOS Technology

Share this

The first post in this two-part series introduced machine learning analytics as a new way to find and fix the root cause of performance problems to help meet SLAs. This post explains three ways MLA can be used to better utilize resources for optimal performance.

The first way MLA helps make certain needed performance is delivered while optimally use resources is by providing the accurate information needed for IT to tune VM configurations settings. IT managers today have poor insight into the causes of poor application performance. To be extra careful, they often throw a lot of hardware at the problem in an attempt to avoid the possibility of starving the applications.

In many cases applications can be over provisioned by as much as 80 percent. Under provisioning VMs is less common but equally problematic and can lead to very poor performance. Traditional processes for right-sizing VMs, is time-consuming, error-prone and inaccurate. IT administrators need the skill, time, and tools to run multiple reports, and then manually assemble their findings to approximate the right settings.

In contrast, MLA continuously and automatically observes resource utilization patterns using real-time data from the environment to identify over- and undersized VMs and then recommends precise configuration settings to right-size the VM for performance. And if usage changes, MLA will dynamically update recommendations.

The second way MLA helps improves utilization and save money is by finding unused or wasted resources. Among the many advantages of virtualization is the ease with which VMs can be set up and torn down and how storage can be dynamically allocated. But when unused VM’s or storage snapshots are left to languish, they waste precious resources. And these situations can be extremely difficult to identify given some of these may be seemingly unused when in fact they are being used! Removing these in error could be disastrous, so IT leaves them there.

MLA solves this by observing patterns of behavior over time over multiple dimensions to identify which VM’s are truly inactive and which storage snapshots are safe to be freed up. It then recommends precisely how to recover the waste. Once again eliminating the guess work.

Some MLA systems also provide a complete summary of savings that could be achieved by removing wasted resources and right sizing VM’s. They provide comprehensive reports that include not only the saving in hardware resources, but also the savings in software licensing that can be achieved by reducing the number of hosts and VMs.

The third way machine learning analytics helps optimize resource allocations for peak performance is by identifying those applications that would benefit the most from storage acceleration through the use of all-flash arrays or host-based caching (HBC). Storage acceleration delivers substantial improvements in throughput performance by increasing I/O operations per second (IOPS). But to be successful, IT managers need to verify that a) the root cause of their performance issue is related to storage performance and b) that they have chosen the right VMs and configured the storage acceleration optimally. Today, most use a trial-and-error approach and best guess usually using simple single dimension measurements from storage tools.

Machine learning is ideal for delivering the right information to make the decisions regarding which VMs need acceleration and how best configure them. Some MLA systems are also able to perform a simulation to estimate the likely increase in IOPS, which enables the IT department to prioritize the implementation effort.

Machine learning analytics brings machine derived intelligence to task of optimally configuring the infrastructure taking the guesswork out of many aspects involved in meeting SLAs more efficiently and cost-effectively. And with the technology advancing rapidly, its future holds tremendous potential for many new and even more powerful capabilities.

Jerry Melnick is President and CEO of SIOS Technology.

Jerry Melnick is President and CEO of SIOS Technology
Share this

The Latest

July 17, 2019

The 11th anniversary of the Apple App Store frames a momentous time period in how we interact with each other and the services upon which we have come to rely. Even so, we continue to have our in-app mobile experiences marred by poor performance and instability. Apple has done little to help, and other tools provide little to no visibility and benchmarks on which to prioritize our efforts outside of crashes ...

July 16, 2019

Confidence in artificial intelligence (AI) and its ability to enhance network operations is high, but only if the issue of bias is tackled. Service providers (68%) are most concerned about the bias impact of "bad or incomplete data sets," since effective AI requires clean, high quality, unbiased data, according to a new survey of communication service providers ...

July 15, 2019

Every internet connected network needs a visibility platform for traffic monitoring, information security and infrastructure security. To accomplish this, most enterprise networks utilize from four to seven specialized tools on network links in order to monitor, capture and analyze traffic. Connecting tools to live links with TAPs allow network managers to safely see, analyze and protect traffic without compromising network reliability. However, like most networking equipment it's critical that installation and configuration are done properly ...

July 11, 2019

The Democratic presidential debates are likely to have many people switching back-and-forth between live streams over the coming months. This is going to be especially true in the days before and after each debate, which will mean many office networks are likely to see a greater share of their total capacity going to streaming news services than ever before ...

July 10, 2019

Monitoring of heating, ventilation and air conditioning (HVAC) infrastructures has become a key concern over the last several years. Modern versions of these systems need continual monitoring to stay energy efficient and deliver satisfactory comfort to building occupants. This is because there are a large number of environmental sensors and motorized control systems within HVAC systems. Proper monitoring helps maintain a consistent temperature to reduce energy and maintenance costs for this type of infrastructure ...

July 09, 2019

Shoppers won’t wait for retailers, according to a new research report titled, 2019 Retailer Website Performance Evaluation: Are Retail Websites Meeting Shopper Expectations? from Yottaa ...

June 27, 2019

Customer satisfaction and retention were the top concerns for a majority (58%) of IT leaders when suffering downtime or outages, according to a survey of top IT leaders conducted by AIOps Exchange. The effect of service interruptions on customers outweighed other concerns such as loss of revenue, brand reputation, negative press coverage, or the impact on IT Ops teams.

June 26, 2019

It is inevitable that employee productivity and the quality of customer experiences suffer as a consequence of the poor performance of O365. The quick detection and rapid resolution of problems associated with O365 are top of mind for any organization to keep its business humming ...

June 25, 2019

Employees at British businesses rate computer downtime as the most significant irritant at their current workplace (41 percent) when asked to pick their top three ...

June 24, 2019

The modern enterprise network is an entirely different beast today than the network environments IT and ops teams were tasked with managing just a few years ago. With the rise of SaaS, widespread cloud migration across industries and the trend of enterprise decentralization all playing a part, the challenges IT faces in adapting their management and monitoring techniques continue to mount ...