The Merging of Traditional QA and Monitoring is the Future of Dev
April 12, 2021

Richard Whitehead
Moogsoft

We're all familiar with the process of QA within the software development cycle. Developers build a product and send it to QA engineers, who test and bless it before pushing it into the world. After release, a different team of SREs with their own toolset then monitor for issues and bugs. Now, a new level of customer expectations for speed and reliability have pushed businesses further toward delivering rapid product iterations and innovations to keep up with customer demands. This leaves little time to run the traditional development process. QA can no longer act as a major, individual step.

Fortunately, modern, automated infrastructure as code (IAC)-built toolchains that deliver continuous observability now let SRE teams watch the entire build pipeline from the first piece of code through release. This enables a whole new speed within the delivery cycle and merges the traditional roles of QA and monitoring.

Helping "the Human in the Middle"

Without a proper QA process, any change dev teams make to digital systems can have cascading effects on the infrastructure. This only further stresses the SRE team to find and fix issues after deployment. And changes are happening faster than ever. As a result, we meet the juxtaposition between the need for QA and the limited time to work the process into the development cycle as a standalone step.

Observability (mining deep data from distributed systems) delivers the data necessary to eliminate traditional QA, but that isn't enough. Humans still need help. When you apply AI to this observability data (intelligent observability), teams can analyze data at machine speed. This lets DevOps practitioners and SREs view the entire product lifecycle, from early development to daily performance, through the lens of quality.

The use of intelligent observability helps teams find the needle in the proverbial haystack of data — the root causes of issues within digital systems — instantly. It also helps identify actionable ways to quickly resolve a new product's impacts on the infrastructure. Without this capability, we revert to the old way of doing things where the dev team has QA find the needle instead. This new continuous learning and intelligent collaboration creates a merging of traditional QA and monitoring for a CI/CD pipeline that actually works.

Integrating observability with AI into the development cycle creates an opportunity to monitor expected outcomes much closer, enabling "the human in the middle" to spot change almost instantly. If the system starts behaving dramatically differently after a deployment, SREs and DevOps practitioners can see it and intervene immediately, without the need to wait for a QA team. If nothing changes or the system improves, they know there's no need to remediate a deployment.

In cases where a change in performance is expected, it was traditionally incumbent on the developer to modify the unit tests or to communicate the change to the QA team. Now, AI- and ML-based systems' change tolerance reduces IT teams' effort. For example, if you're monitoring a KPI with an adaptive thresholding algorithm, you can simply let the algorithm re-train and learn the new behavior instead of relying on the dev team to communicate the expected change in performance to QA.

Merged Systems Support DevOps Three Ways

A merged system of QA and monitoring throughout the development cycle also aligns with the DevOps Three Ways principles. We look at the First Way: flow/system thinking, the Second Way: amplifying feedback loops, and the Third Way: creating a culture of continual experimentation and learning, as the guiding principles behind DevOps practices.

The merging of traditional QA and monitoring supports the First Way — flow/system thinking — by building a holistic system view of the development process with the elimination of siloed workflows. This creates quality throughout development and delivery because the system is never optimized for local efficiency only or passed onto the next step with a known issue.

A merge also supports the Second Way — amplifying feedback loops — by giving IT teams clear, consistent feedback throughout the development and delivery process. As traditional QA and monitoring merge, the need to loop feedback through multiple teams with various processes and priorities evaporates.

This merge perhaps has the greatest impact on the Third Way. As DevOps practitioners focus on the holistic product cycle versus quick development that's passed off to QA, they can learn from bugs and build constant improvement into their process. This also gives them room to experiment and take risks. Infusing quality into the development process itself means they won't hand over garbage to the QA team — no matter how "out there" the forthcoming release might be.

Integrating observability with AI into the development cycle allows teams to not only see into systems as they're being built, but also identify actionable ways to resolve a new product's impacts on the overall infrastructure. As DevOps practitioners and SREs balance change, these actionable insights empower the merging of traditional QA and monitoring for a whole new speed of delivery — delivering better customer experiences and giving your business the ability to launch competitive, innovative services faster than ever.

Richard Whitehead is Chief Evangelist at Moogsoft
Share this

Industry News

May 15, 2025

GitLab announced the launch of GitLab 18, including AI capabilities natively integrated into the platform and major new innovations across core DevOps, and security and compliance workflows that are available now, with further enhancements planned throughout the year.

May 15, 2025

Perforce Software is partnering with Siemens Digital Industries Software to transform how smart, connected products are designed and developed.

May 15, 2025

Reply launched Silicon Shoring, a new software delivery model powered by Artificial Intelligence.

May 15, 2025

CIQ announced the tech preview launch of Rocky Linux from CIQ for AI (RLC-AI), an operating system engineered and optimized for artificial intelligence workloads.

May 14, 2025

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, announced the launch of the Cybersecurity Skills Framework, a global reference guide that helps organizations identify and address critical cybersecurity competencies across a broad range of IT job families; extending beyond cybersecurity specialists.

May 14, 2025

CodeRabbit is now available on the Visual Studio Code editor.

The integration brings CodeRabbit’s AI code reviews directly into Cursor, Windsurf, and VS Code at the earliest stages of software development—inside the code editor itself—at no cost to the developers.

May 14, 2025

Chainguard announced Chainguard Libraries for Python, an index of malware-resistant Python dependencies built securely from source on SLSA L2 infrastructure.

May 14, 2025

Sysdig announced the donation of Stratoshark, the company’s open source cloud forensics tool, to the Wireshark Foundation.

May 13, 2025

Pegasystems unveiled Pega Predictable AI™ Agents that give enterprises extraordinary control and visibility as they design and deploy AI-optimized processes.

May 13, 2025

Kong announced the introduction of the Kong Event Gateway as a part of their unified API platform.

May 13, 2025

Azul and Moderne announced a technical partnership to help Java development teams identify, remove and refactor unused and dead code to improve productivity and dramatically accelerate modernization initiatives.

May 13, 2025

Parasoft has added Agentic AI capabilities to SOAtest, featuring API test planning and creation.

May 13, 2025

Zerve unveiled a multi-agent system engineered specifically for enterprise-grade data and AI development.

May 12, 2025

LambdaTest, a unified agentic AI and cloud engineering platform, has announced its partnership with MacStadium(link is external), the industry-leading private Mac cloud provider enabling enterprise macOS workloads, to accelerate its AI-native software testing by leveraging Apple Silicon.

May 12, 2025

Tricentis announced a new capability that injects Tricentis’ AI-driven testing intelligence into SAP’s integrated toolchain, part of RISE with SAP methodology.