Skip to main content

A Fresh Look at Advanced IT Analytics - Why the Industry Continues to Get it Wrong

Dennis Drogseth

Buzzwords in tech (like politics) do a lot to call attention to themselves, but they don't always do a very good job of calling attention to the truth. Reality, after all, is often mystifyingly multi-dimensional, while "what's hot" tends to become linear and often cartoonish.

Over the last few years I've tried to represent a clear and growing trend that I've come to call "Advanced IT Analytics" or AIA, in contrast with other industry terms such as "IT Operations Analytics" and "Big Data". My issue with the former is that AIA isn't restricted to operations, but can reach out across all of IT, including executives, service desk and ITSM teams, development and even non-IT business stakeholders. It is multi-use case and multi-stakeholder in value, as the same data mosaic may serve performance, security, change management, and DevOps requirements, while also supporting business stakeholders in areas such as customer experience and market planning.

My issue with "big data" is that when it comes to AIA, just taking big data by itself misses the point. While AIA often thrives on significant volumes of data across multiple domains, what's key to the more progressive AIA solutions are its powers to interrelate and analyze data with a clear eye to meaningful outcomes. Genetically (taking the term metaphorically) I would argue that AIA is not primarily an outgrowth of business intelligence and big data pots, including NoSQL options like Hadoop and Cassandra. Rather, AIA grew out of advanced self-learning tools targeting far more finite data sources, such as time-series data directed at service performance outcomes, or even advanced event correlation.

What made AIA distinctive early on was its ability to assimilate data from many different toolsets and create a common fabric of intelligence that crossed domain silos. These tools often had surprising options for predicting future outcomes and discovering patterns that were not looked for or sought after. They also had political and social challenges from IT siloed communities refusing to give up their own siloed toolset preeminence or even share their data with others in IT. These benefits (and these political issues) continue even as AIA continues to evolve to include many new options, including big data pots in some cases.

What we're witnessing now is, I believe, a great deal of industry confusion about how to go about bringing advanced analytics to the IT community — aggravated inevitably by both marketing hype, and, sadly, boxed-in categories from the analyst community wedded far too much to technology and far too little to use case. AIA is, in fact, especially a challenge because it tends to support a diversity of use cases, making it less like a traditional market and more like an architectural revolution (or evolution) in next-generation business service management. Or given current buzzword pre-eminence, let's make that digital service management. At least here the buzzword really does have some genuine meaning and value.

So I'd like to go back to what I believe are AIA's roots. These include tiered or blended capabilities to assimilate data from many different sources — either from many different toolset investments (in recent research our respondents indicated 10-20 toolsets either directly or via an aggregated data store); and/or from a wide variety of sources ranging from transactional data including user and customer behaviors, to log files, to packets and wire data, to events, to Excel spreadsheets, and unstructured data as in text and social media.

What also distinguishes AIA is a unique ability to link critical IT business service interdependencies for both change and performance in context with event, time series, transaction and other data. While many of our research respondents sought out interdependency mapping within the analytics solution itself, probably the most frequent linkage in real adoptions comes from the application discovery and dependency (ADDM) arena, as well as newer, more dynamic instances of CMDBs and federated configuration management systems (CMSs).

The net values of good AIA solutions include much faster time to value and far less administrative overhead than massive data lakes that are created virtually as an end in themselves. The ability to assimilate many multiple "trusted sources" and discover new and unexpected values needn't be an investment in an army of white coats. It can be — in some cases at least — surprisingly dynamic and self-administrating.

This AIA tidal wave is still new. Still a relatively small and distant rise in the information technology ocean. Yet there are already a growing number of AIA innovators with different directions and focus — from cloud, to integrated DevOps and change management, to user and customer and digital experience optimization.

I will be presenting a webinar on November 10 — with a better chance to explain the values of tiered or blended AIA. And I'll be following up with some new research to be completed in Q1 of next year: "Advanced IT Analytics Part II: Deployment Priorities and Lessons Learned." Hopefully the data will reinforce what I believe should be AIA progress toward more effective advanced analytics for IT, and not a sudden dip into white-coated chaos. But then you never know — that's part of the appeal of doing research. Invariably, if it's any good, it will always teach you something new.

Hot Topics

The Latest

Every digital customer interaction, every cloud deployment, and every AI model depends on the same foundation: the ability to see, understand, and act on data in real time ... Recent data from Splunk confirms that 74% of the business leaders believe observability is essential to monitoring critical business processes, and 66% feel it's key to understanding user journeys. Because while the unknown is inevitable, observability makes it manageable. Let's explore why ...

Organizations that perform regular audits and assessments of AI system performance and compliance are over three times more likely to achieve high GenAI value than organizations that do not, according to a survey by Gartner ...

Kubernetes has become the backbone of cloud infrastructure, but it's also one of its biggest cost drivers. Recent research shows that 98% of senior IT leaders say Kubernetes now drives cloud spend, yet 91% still can't optimize it effectively. After years of adoption, most organizations have moved past discovery. They know container sprawl, idle resources and reactive scaling inflate costs. What they don't know is how to fix it ...

Artificial intelligence is no longer a future investment. It's already embedded in how we work — whether through copilots in productivity apps, real-time transcription tools in meetings, or machine learning models fueling analytics and personalization. But while enterprise adoption accelerates, there's one critical area many leaders have yet to examine: Can your network actually support AI at the speed your users expect? ...

The more technology businesses invest in, the more potential attack surfaces they have that can be exploited. Without the right continuity plans in place, the disruptions caused by these attacks can bring operations to a standstill and cause irreparable damage to an organization. It's essential to take the time now to ensure your business has the right tools, processes, and recovery initiatives in place to weather any type of IT disaster that comes up. Here are some effective strategies you can follow to achieve this ...

In today's fast-paced AI landscape, CIOs, IT leaders, and engineers are constantly challenged to manage increasingly complex and interconnected systems. The sheer scale and velocity of data generated by modern infrastructure can be overwhelming, making it difficult to maintain uptime, prevent outages, and create a seamless customer experience. This complexity is magnified by the industry's shift towards agentic AI ...

In MEAN TIME TO INSIGHT Episode 19, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA explains the cause of the AWS outage in October ... 

The explosion of generative AI and machine learning capabilities has fundamentally changed the conversation around cloud migration. It's no longer just about modernization or cost savings — it's about being able to compete in a market where AI is rapidly becoming table stakes. Companies that can't quickly spin up AI workloads, feed models with data at scale, or experiment with new capabilities are falling behind faster than ever before. But here's what I'm seeing: many organizations want to capitalize on AI, but they're stuck ...

On September 16, the world celebrated the 10th annual IT Pro Day, giving companies a chance to laud the professionals who serve as the backbone to almost every successful business across the globe. Despite the growing importance of their roles, many IT pros still work in the background and often go underappreciated ...

Artificial Intelligence (AI) is reshaping observability, and observability is becoming essential for AI. This is a two-way relationship that is increasingly relevant as enterprises scale generative AI ... This dual role makes AI and observability inseparable. In this blog, I cover more details of each side ...

A Fresh Look at Advanced IT Analytics - Why the Industry Continues to Get it Wrong

Dennis Drogseth

Buzzwords in tech (like politics) do a lot to call attention to themselves, but they don't always do a very good job of calling attention to the truth. Reality, after all, is often mystifyingly multi-dimensional, while "what's hot" tends to become linear and often cartoonish.

Over the last few years I've tried to represent a clear and growing trend that I've come to call "Advanced IT Analytics" or AIA, in contrast with other industry terms such as "IT Operations Analytics" and "Big Data". My issue with the former is that AIA isn't restricted to operations, but can reach out across all of IT, including executives, service desk and ITSM teams, development and even non-IT business stakeholders. It is multi-use case and multi-stakeholder in value, as the same data mosaic may serve performance, security, change management, and DevOps requirements, while also supporting business stakeholders in areas such as customer experience and market planning.

My issue with "big data" is that when it comes to AIA, just taking big data by itself misses the point. While AIA often thrives on significant volumes of data across multiple domains, what's key to the more progressive AIA solutions are its powers to interrelate and analyze data with a clear eye to meaningful outcomes. Genetically (taking the term metaphorically) I would argue that AIA is not primarily an outgrowth of business intelligence and big data pots, including NoSQL options like Hadoop and Cassandra. Rather, AIA grew out of advanced self-learning tools targeting far more finite data sources, such as time-series data directed at service performance outcomes, or even advanced event correlation.

What made AIA distinctive early on was its ability to assimilate data from many different toolsets and create a common fabric of intelligence that crossed domain silos. These tools often had surprising options for predicting future outcomes and discovering patterns that were not looked for or sought after. They also had political and social challenges from IT siloed communities refusing to give up their own siloed toolset preeminence or even share their data with others in IT. These benefits (and these political issues) continue even as AIA continues to evolve to include many new options, including big data pots in some cases.

What we're witnessing now is, I believe, a great deal of industry confusion about how to go about bringing advanced analytics to the IT community — aggravated inevitably by both marketing hype, and, sadly, boxed-in categories from the analyst community wedded far too much to technology and far too little to use case. AIA is, in fact, especially a challenge because it tends to support a diversity of use cases, making it less like a traditional market and more like an architectural revolution (or evolution) in next-generation business service management. Or given current buzzword pre-eminence, let's make that digital service management. At least here the buzzword really does have some genuine meaning and value.

So I'd like to go back to what I believe are AIA's roots. These include tiered or blended capabilities to assimilate data from many different sources — either from many different toolset investments (in recent research our respondents indicated 10-20 toolsets either directly or via an aggregated data store); and/or from a wide variety of sources ranging from transactional data including user and customer behaviors, to log files, to packets and wire data, to events, to Excel spreadsheets, and unstructured data as in text and social media.

What also distinguishes AIA is a unique ability to link critical IT business service interdependencies for both change and performance in context with event, time series, transaction and other data. While many of our research respondents sought out interdependency mapping within the analytics solution itself, probably the most frequent linkage in real adoptions comes from the application discovery and dependency (ADDM) arena, as well as newer, more dynamic instances of CMDBs and federated configuration management systems (CMSs).

The net values of good AIA solutions include much faster time to value and far less administrative overhead than massive data lakes that are created virtually as an end in themselves. The ability to assimilate many multiple "trusted sources" and discover new and unexpected values needn't be an investment in an army of white coats. It can be — in some cases at least — surprisingly dynamic and self-administrating.

This AIA tidal wave is still new. Still a relatively small and distant rise in the information technology ocean. Yet there are already a growing number of AIA innovators with different directions and focus — from cloud, to integrated DevOps and change management, to user and customer and digital experience optimization.

I will be presenting a webinar on November 10 — with a better chance to explain the values of tiered or blended AIA. And I'll be following up with some new research to be completed in Q1 of next year: "Advanced IT Analytics Part II: Deployment Priorities and Lessons Learned." Hopefully the data will reinforce what I believe should be AIA progress toward more effective advanced analytics for IT, and not a sudden dip into white-coated chaos. But then you never know — that's part of the appeal of doing research. Invariably, if it's any good, it will always teach you something new.

Hot Topics

The Latest

Every digital customer interaction, every cloud deployment, and every AI model depends on the same foundation: the ability to see, understand, and act on data in real time ... Recent data from Splunk confirms that 74% of the business leaders believe observability is essential to monitoring critical business processes, and 66% feel it's key to understanding user journeys. Because while the unknown is inevitable, observability makes it manageable. Let's explore why ...

Organizations that perform regular audits and assessments of AI system performance and compliance are over three times more likely to achieve high GenAI value than organizations that do not, according to a survey by Gartner ...

Kubernetes has become the backbone of cloud infrastructure, but it's also one of its biggest cost drivers. Recent research shows that 98% of senior IT leaders say Kubernetes now drives cloud spend, yet 91% still can't optimize it effectively. After years of adoption, most organizations have moved past discovery. They know container sprawl, idle resources and reactive scaling inflate costs. What they don't know is how to fix it ...

Artificial intelligence is no longer a future investment. It's already embedded in how we work — whether through copilots in productivity apps, real-time transcription tools in meetings, or machine learning models fueling analytics and personalization. But while enterprise adoption accelerates, there's one critical area many leaders have yet to examine: Can your network actually support AI at the speed your users expect? ...

The more technology businesses invest in, the more potential attack surfaces they have that can be exploited. Without the right continuity plans in place, the disruptions caused by these attacks can bring operations to a standstill and cause irreparable damage to an organization. It's essential to take the time now to ensure your business has the right tools, processes, and recovery initiatives in place to weather any type of IT disaster that comes up. Here are some effective strategies you can follow to achieve this ...

In today's fast-paced AI landscape, CIOs, IT leaders, and engineers are constantly challenged to manage increasingly complex and interconnected systems. The sheer scale and velocity of data generated by modern infrastructure can be overwhelming, making it difficult to maintain uptime, prevent outages, and create a seamless customer experience. This complexity is magnified by the industry's shift towards agentic AI ...

In MEAN TIME TO INSIGHT Episode 19, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA explains the cause of the AWS outage in October ... 

The explosion of generative AI and machine learning capabilities has fundamentally changed the conversation around cloud migration. It's no longer just about modernization or cost savings — it's about being able to compete in a market where AI is rapidly becoming table stakes. Companies that can't quickly spin up AI workloads, feed models with data at scale, or experiment with new capabilities are falling behind faster than ever before. But here's what I'm seeing: many organizations want to capitalize on AI, but they're stuck ...

On September 16, the world celebrated the 10th annual IT Pro Day, giving companies a chance to laud the professionals who serve as the backbone to almost every successful business across the globe. Despite the growing importance of their roles, many IT pros still work in the background and often go underappreciated ...

Artificial Intelligence (AI) is reshaping observability, and observability is becoming essential for AI. This is a two-way relationship that is increasingly relevant as enterprises scale generative AI ... This dual role makes AI and observability inseparable. In this blog, I cover more details of each side ...