Are You Benefiting Your End Users?
July 13, 2016

Brad Denniston
AppEnsure

Share this

When you are working in IT Operations, your customer is the person who sends a request. Think back to being in front of a bank cashier or at a checkout counter when you insert you card. What do you expect? You expect:
 
■ the correct response (I took your money)

■ within the expected time, usually a couple of seconds.
 
Those are the two main benefits your data center provides. If you don't provide those benefits your business loses customers. It will filter down to you through sales, then marketing, then the CIO then – what are you going to do now?



 
If your data center is carefully monitoring all the hardware (servers, drives, routers, etc.) and all of the software (each OS, each process, each FIFO, etc.) you cannot detect if your customer is getting a response in the time they expect. You will see availability of the resources but not the quality of service or end-user experience.

You Have to Look at What the Customer Sees

You have to watch each request from your customer and measure the response time of the reply to that packet to see what your customer sees. That is the second benefit you provide to your customer.

This works only if you measure the response time of EVERY customer request and raise an intelligent, actionable alert when the response time deviates from what has been working just fine. When you collect this unique metric mentioned above, you can:
 
■ immediately inform affected customers that you know about the delay

■ immediately start working around and/or fixing the delay where it is occurring.
 
How do you immediately get the information you need to fix the problem? Go back to where I said, "an intelligent, actionable alert". The actionable alert should provide information regarding:
 
■ most likely cause of the problem

■ where the problem is

■ suggested fixes
 
Now within a few seconds you know what is needed to work around the problem to keep your customers happy and you know what to investigate for a long term solution.

Brad Denniston is a Senior Solutions Architect at AppEnsure.

Share this

The Latest

October 17, 2019

As the data generated by organizations grows, APM tools are now required to do a lot more than basic monitoring of metrics. Modern data is often raw and unstructured and requires more advanced methods of analysis. The tools must help dig deep into this data for both forensic analysis and predictive analysis. To extract more accurate and cheaper insights, modern APM tools use Big Data techniques to store, access, and analyze the multi-dimensional data ...

October 16, 2019

Modern enterprises are generating data at an unprecedented rate but aren't taking advantage of all the data available to them in order to drive real-time, actionable insights. According to a recent study commissioned by Actian, more than half of enterprises today are unable to efficiently manage nor effectively use data to drive decision-making ...

October 15, 2019

According to a study by Forrester Research, an enhanced UX design can increase the conversion rate by 400%. If UX has become the ultimate arbiter in determining the success or failure of a product or service, let us first understand what UX is all about ...

October 10, 2019

The requirements of an APM tool are now much more complex than they've ever been. Not only do they need to trace a user transaction across numerous microservices on the same system, but they also need to happen pretty fast ...

October 09, 2019

Performance monitoring is an old problem. As technology has advanced, we've had to evolve how we monitor applications. Initially, performance monitoring largely involved sending ICMP messages to start troubleshooting a down or slow application. Applications have gotten much more complex, so this is no longer enough. Now we need to know not just whether an application is broken, but why it broke. So APM has had to evolve over the years for us to get there. But how did this evolution take place, and what happens next? Let's find out ...

October 08, 2019

There are some IT organizations that are using DevOps methodology but are wary of getting bogged down in ITSM procedures. But without at least some ITSM controls in place, organizations lose their focus on systematic customer engagement, making it harder for them to scale ...

October 07, 2019
OK, I admit it. "Service modeling" is an awkward term, especially when you're trying to frame three rather controversial acronyms in the same overall place: CMDB, CMS and DDM. Nevertheless, that's exactly what we did in EMA's most recent research: <span style="font-style: italic;">Service Modeling in the Age of Cloud and Containers</span>. The goal was to establish a more holistic context for looking at the synergies and differences across all these areas ...
October 03, 2019

If you have deployed a Java application in production, you've probably encountered a situation where the application suddenly starts to take up a large amount of CPU. When this happens, application response becomes sluggish and users begin to complain about slow response. Often the solution to this problem is to restart the application and, lo and behold, the problem goes away — only to reappear a few days later. A key question then is: how to troubleshoot high CPU usage of a Java application? ...

October 02, 2019

Operations are no longer tethered tightly to a main office, as the headquarters-centric model has been retired in favor of a more decentralized enterprise structure. Rather than focus the business around a single location, enterprises are now comprised of a web of remote offices and individuals, where network connectivity has broken down the geographic barriers that in the past limited the availability of talent and resources. Key to the success of the decentralized enterprise model is a new generation of collaboration and communication tools ...

October 01, 2019

To better understand the AI maturity of businesses, Dotscience conducted a survey of 500 industry professionals. Research findings indicate that although enterprises are dedicating significant time and resources towards their AI deployments, many data science and ML teams don't have the adequate tools needed to properly collaborate on, build and deploy AI models efficiently ...