Backend to the Future: How AIOps Is Transforming Application Monitoring
March 17, 2020

Antonio Piraino
ScienceLogic

Share this

The modern enterprise's IT ecosystem is highly complex and ephemeral. When IT performance lags, and when incidents arrive, IT operations teams need complete visibility across their system infrastructure to address issues properly and efficiently.

Application backend monitoring is the key to acquiring visibility across the enterprise's application stack, from the application layer and underlying infrastructure to third-party API services, web servers and databases, be they on-premises, in a public or private cloud, or in a hybrid model. By tracking and reporting performance in real time, IT teams can ensure applications perform at peak efficiency — and guarantee a seamless customer experience.

How can IT operations teams improve application backend monitoring? By embracing artificial intelligence for operations — AIOps.

Discovery: Separating the Good Data from the Bad

The foundation of effective application monitoring and management is quality data. But to identify "good data," it helps to have a good idea of what constitutes its opposite. "Bad data" is either inaccurate, incomplete, irrelevant, or inconsistent. What every enterprise needs for effective application monitoring is, above all, quality data that can yield actionable insights.

But what kind of data is most essential? Enterprises should approach monitoring with an eye towards both breadth and depth. That means first gathering data across the enterprise's network and infrastructure to take stock of its potential impact on applications, and then taking a "top-down" approach to gain insight into individual applications, their operational environments, and their business functions.

Context: So What Does It All Mean?

Once you have good operational training data — accurate, complete, relevant, and consistent data — it must be contextualized to deliver insights that drive recommendations and automated actions. An unclean "data swamp" that is full of unstructured garbage is of little help to an IT team that must expend significant resources in order to convert it into a "data lake," filled with clean, usable data. No matter how much analytics get thrown at a data swamp — poorly defined data will inevitably yield flawed results, liable to negatively impact the enterprise's bottom line.

The incredible amount of data produced by applications is both a blessing and a curse for the modern enterprise. A blessing, because the more available data there is, the more insight-fueled operational capabilities an enterprise has to work with; a curse, because data must be properly contextualized to be useful. In other words, IT teams don't just need the bare-bones information that data provides, they need metadata to illustrate the relationships among disparate data points to understand the impact of the underlying phenomena and pinpoint the root causes of those phenomena. The AIOps-driven process of applying "context to chaos" is central to providing an all-encompassing view of an application's health.

Transformation: Acting on Data-Driven Insights

Application monitoring solutions that reside in the operating system and provide code-level performance, tracing, application topology mapping, and tracking can provide both incident automation and data-driven recommendations that enable IT teams to prevent issues and preempt the occurrence of potential backend outages. Furthermore, by helping IT teams differentiate between normal occurrences and those that require attention and remediation according to degree of priority, AIOps gives IT teams the insight they need to act, rapidly and efficiently. This "noise reduction" functionality also routes alerts to appropriate teams, reducing inefficiencies and streamlining workflows.

Who Can Benefit?

Which enterprises most stand to gain from application monitoring? While workloads are gaining in complexity and ephemerality across the board, application monitoring is meant for enterprises that most require code-level visibility — those that have either developed many custom applications and/or those that prioritize understanding code function and its impact on applications central to the business' bottom line.

AIOps is facilitating a new era in application monitoring by giving IT teams the tools they need to gain visibility across the breadth and depth of their application stacks. As enterprise workflows become ever more complex and ephemeral, the costs of not adopting AI for operations will become ever more apparent as the benefits of AIOps continue to be felt — from the application end-user to the enterprise's bottom line.

Antonio Piraino is CTO of ScienceLogic
Share this

The Latest

May 28, 2024
When it comes to ensuring the effectiveness of a software application, it's paramount to ensure that the application can handle varying degrees of demand. Performance testing is a crucial aspect of the software development cycle ...
May 23, 2024

Hybrid cloud architecture is breaking the backs of network engineering and operations teams. These teams are more successful when their companies go all-in with the cloud or stay out of it entirely. When companies maintain hybrid infrastructure, with applications and data residing across data centers and public cloud services, the network team struggles. This insight emerged in the newly published 2024 edition of Enterprise Management Associates' (EMA) Network Management Megatrends research ...

May 22, 2024

As IT practitioners, we often find ourselves fighting fires rather than proactively getting ahead ... Many spend countless hours managing several tools that give them different, fractured views of their own work — which isn't an effective use of time. Balancing daily technical tasks with long-term company goals requires a three-step approach. I'll share these steps and tips for others to do the same ...

May 21, 2024

IT service outages are more than a minor inconvenience. They can cost businesses millions while simultaneously leading to customer dissatisfaction and reputational damage. Moreover, the constant pressure of dealing with fire drills and escalations day and night can take a heavy toll on ITOps teams, leading to increased stress, human error, and burnout ...

May 20, 2024

Amid economic disruption, fintech competition, and other headwinds in recent years, banks have had to quickly adjust to the demands of the market. This adaptation is often reliant on having the right technology infrastructure in place ...