Best Practices to Resolve Resource Contention in the Cloud
October 18, 2012
Assaf Sagi
Share this

Preventing a slow application caused by probable resource contention requires a rigorous methodological approach and an appropriate toolset. IT managers, working with business owners, should prioritize critical apps for multi-tenancy and maximum performance.

Resource contention is what happens when demand exceeds supply for a shared resource, such as memory, CPU, network or storage. In modern IT, where cost cuts are the norm, addressing resource contention is a top priority. The main concern with resource contention is the performance degradation that occurs as a result.

When two or more transactions are racing for the same resource, one of them will get it and the others will have to wait in line until the resource is available, meanwhile causing user frustration. This problem is not new, considering the common scenario of two processes on the same machine competing for the same physical CPU or memory. Another typical scenario involves two database transactions fighting for I/O on the same physical disk.

Resource contention problems have always been challenging to identify and to fix. Contention issues may come and go, only to return again when performance is most critical.

Here are the three basic steps for IT managers when it comes to resolving resource contention:

- First, IT needs to determine that the performance problems are indeed resource-related.

- Next, is to identify which transactions are competing for resources.

- Finally, to resolve the problem typically involves prioritizing one transaction above the other.

But which should you prioritize? This is a zero-sum game and one party will have to “lose” so ideally linking back to business priorities helps IT make informed decisions in the resolution process.

The Role of Virtualization in Resource Contention

With the advent of virtualization technology and cloud computing, however, resource contention is becoming harder to resolve.

First, there are new places where resource contention may occur. For example, CPU contention now comes in two forms: two processes racing for the same virtual machine CPU, and that virtual machine racing for physical CPU with other virtual machines. Another example is in storage pools, when data is competing for the fast but expensive Flash storage.

Second, environments are becoming more dynamic with virtualization and cloud technologies. As IT makes a transformation to IT-as-a-Service, new resources are constantly being provisioned and consumed. It is not uncommon to provision new VMs for hours with high workloads and then decommission these VMs when the load subsides. Mobile access and BYOD are other factors affecting the dynamic environment, since access patterns are changing and load is becoming less predictable.

Third, automation is a mixed blessing. The vendors of virtualization hardware and software are aware of the resource contention challenge and have introduced automatic algorithms to address it, which move workloads around to distribute the load more evenly and prioritize according to the load they are generating. This approach works well only if the busiest workloads are the most important ones. Yet this is not always the case, so the system prioritizes the less-important transactions at the expense of the more critical ones. Another implication of automation is that IT now has less visibility and less control of the environment.

Let’s revisit the steps for resolving resource contention, and factor in the impact of virtualization and cloud technologies:

1. Identify that the problem is related to resource contention

2. Identify the competitors

3. Prioritize the workloads according to business considerations

The first step is already problematic, since resource contention issues can manifest in any number of ways: what seems to be a large chunk of time spent in the Java tier may actually be a result of the Java VM not getting enough CPU.

The second step is even harder. Analysis of resource contention issues is after-the-fact. By then, the culprits may have already stopped competing, started using other resources or have been decommissioned altogether.

The third step is the hardest, since IT is hard-pressed to prioritize applications if they are unsure which processes/transactions/applications are competing.

Best Practices to Resolve Resource Contention in Virtual Environments

The number of possibilities for resource contention problems and ways to overcome them is substantial. Every IT organization has its own particular landscape and idiosyncrasies. Below, however, are some general guidelines which can be tailored to an organization’s unique needs.

The main considerations are the dynamic and multi-tier characteristics of resource contentions. An efficient approach must include cross-tier views, the ability to baseline and compare historical data and tying the resources to their business users:

Side-by-Side View of Performance Across Multiple Tiers: There are plenty of APM products and services that provide dashboards, but few of these solutions will perform complete end-to-end monitoring from the user’s end device to the storage disk, across physical and virtual infrastructure. To solve resource contention, you need to create a dashboard that collects and displays performance data curated from the various monitoring tools. This gives an indication of which resources are over-utilized and whether their over-utilization trend matches the workload trend of the tiers which access said resources. While not perfect, in a typical setting these matching trends would give you a big clue as to who’s using the resources and the resulting impact on performance.

Baselines and Reference Timeframes: When a performance problem occurs, IT should be able to compare the behavior of all components across the IT stack to their behavior in a previous reference timeframe or baseline. This will help you nail down what’s changed and, as a result, understand why a new performance problem has occurred.

Business Context of Performance: Integrating business context into performance metrics requires knowing, for each resource, which transactions are accessing that resource and when. Having the business context in each tier means that you can segregate performance according to the originating user calls and understand the business implications of each tier. Unfortunately, most APM tools have a technical focus today and do not connect the performance of individual tiers to the business transactions and implications. Hence you may need to technically enable passing some context or token between different tiers, for example by overriding the HTTP protocol between two JVMs to contain the original referring business transaction.

Beyond tools, there are needed changes to the IT culture and organization to ensure reliability and quality of service in cloud computing. The Cloud was supposed to break up the silos within IT, yet clearly those silos are still alive. It may take many years before the full transition to cloud and services-based IT forces down those walls.

What helps measurably for now, is if people from those different areas - the Java, network, database and storage tiers - are able to view the same data around infrastructure performance. Easily accessible and comprehensive data helps teams work together better because it eliminates any finger-pointing as to who should take the blame when users start to complain.

As with most problems in IT, teamwork with highly-skilled problem-solvers is still the best way to solve complex issues. Instead of shooting in the dark, it is time for IT departments to think proactively and strategically about how to resolve and manage resource contention, so that their companies can realize all the flexibility and productivity benefits of virtualization and cloud computing.

ABOUT Assaf Sagi

Assaf Sagi is Director of Product Management at Precise Software Solutions. He has more than 16 years of experience in enterprise software development and management. Prior to Precise, Assaf worked for IBM Research and for an advanced ComSec unit in the Israeli Defense Force.

Related Links:

www.precise.com

Share this

The Latest

June 20, 2024

The total cost of downtime for Global 2000 companies is $400 billion annually — or 9% of profits — when digital environments fail unexpectedly, according to The Hidden Costs of Downtime, a new report from Splunk ...

June 18, 2024

With the rise of digital transformation and the increasing reliance on applications for business operations, the need for application performance management (APM) has become more critical ... This blog explains what APM is all about, its significance and key features ...

June 17, 2024

Generative AI (GenAI) has captured significant attention by redefining content creation and automation processes. Despite this surge in GenAI's popularity, it's crucial to highlight the continuous, vital role of machine learning (ML) in underpinning crucial business functions. This era is not about GenAI replacing ML; rather, it's about these technologies collaborating to supercharge intelligent automation across industries ...

June 13, 2024

As organizations continue to navigate their digital transformation journeys, the need for efficient, secure, and scalable data movement strategies has never been more critical ... In an era when enterprise IT landscapes are continually evolving, the strategic movement of data has become a cornerstone of maintaining agility, competitive edge, and operational efficiency ...

June 12, 2024

In May, New Relic published the State of Observability for IT and Telecommunications Report to share insights, statistics, and analysis on the adoption and business value of observability for the IT and telecommunications industries. Here are five key takeaways from the report ...

June 11, 2024
Over the past decade, the pace of technological progress has reached unprecedented levels, where fads both quickly rise and shrink in popularity. From AI and composability to augmented reality and quantum computing, the toolkit of emerging technologies is continuing to expand, creating a complex set of opportunities and challenges for businesses to address. In order to keep pace with competitors, avoiding new models and ideas is not an option. It's critical for organizations to determine whether an idea has transformative properties or is just a flash in the pan — a challenge tackled in Endava's new 2024 Emerging Tech Unpacked Report ...
June 10, 2024

The rapidly evolving nature of the industry, particularly with the recent surge in generative AI, can catch firms off-guard, leaving them scrambling to adapt to new trends without the necessary funds ... This blog will discuss effective strategies for optimizing cloud expenses to free up funds for emerging AI technologies, ensuring companies can adapt and thrive without financial strain ...

June 06, 2024

Software developers are spending more than 57% of their time being dragged into "war rooms" to solve application performance issues, rather than investing their time developing new, cutting-edge software applications as part of their organization's innovation strategy, according to a new report from Cisco ...

June 05, 2024

Generative Artificial Intelligence (GenAI) is continuing to see massive adoption and expanding use cases, despite some ongoing concerns related to bias and performance. This is clear from the results of Applause's 2024 GenAI Survey, which examined how digital quality professionals use and experience GenAI technology ... Here's what we found ...

June 04, 2024

Many times customers want to know why their measured performance doesn't match the speed advertised (by the platform vendor, software vendor, network vendor, etc). Assuming the advertised speeds are (a) within the realm of physical possibility and obeys the laws of physics, and (b) are real achievable speeds and not "click-bait," there are at least ten reasons for being unable to achieve advertised speeds. In situations where customer expectations and measured performance don't align, use the following checklist to help determine the reason(s) why ...