DevOps and AIOps: Developing A New Culture
May 20, 2019

Will Cappelli
Moogsoft

Share this

In today's competitive landscape, businesses must have the ability and process in place to face new challenges and find ways to successfully tackle them in a proactive manner. For years, this has been placed on the shoulders of DevOps teams within IT departments. But, as automation takes over manual intervention to increase speed and efficiency, these teams are facing what we know as IT digitization. How has this changed the way companies function over the years, and what do we have to look forward to in the coming years?

While this all began with the introduction of the Internet in the late 90s, it took a turn after the economic crash in 2007. At this time, automation became the main driver of innovation and a key focus to support revenue. Now, in today's landscape, if automation is not a top concern for IT teams and doesn't sit at the heart of IT strategies, companies risk losing their competitive edge, ultimately resulting in failure.

There has also been an increase in demand over the last decade for IT to have more of a proactive approach to technological pivots, and the pressure to respond quickly has grown. Because of this, development teams have taken the lead to change the role of the IT department within the business by positioning IT as a strategic revenue driver. DevOps within IT departments has also come a long way. Specifically, there are three major changes within these teams worth spotlighting.

For starters, departments were adopting agile development practices to speed up the delivery of creation changes into the production environment. Then, DevOps introduced automation into change delivery.

The final step after accepting the two previous changes, is the alignment of development and operations teams. In the past, DevOps and operations have worked separately: DevOps managed the development, while operations handled the environment. But, as automation takes a more prominent role in companies, it becomes essential that these two teams align. It's no longer feasible to have them in two siloed playing fields.

Joining these teams hasn't been easy. There's been resistance in aligning efforts and daily communication between the two continues to be an issue. It has been a challenge for IT operations to interact with the development team so closely. DevOps has struggled to see the value of managing the production environment, as they often believe the task to be low-level and straightforward. In addition, the perspective that DevOps has on infrastructure is narrow-minded and they're typically only invested in direct projects that relate to them. What this logic fails to address is that fact that no application is completely isolated. Every application is living in an environment of shared resources that all influence each other. Unfortunately, because of these lack of understandings, DevOps and operations remain largely siloed. The collaboration that needs to happen hasn't yet happened.

So, what role does automation have in this struggling relationship? For starters, we know that in order for a new module or application to move from development environment to the real-world production environment, certain steps need to be taken. In the past, these steps have been completed manually. But, with today's automation, humans are taken completely out of the equation, presenting an opportunity for AIOps technologies to execute the process from development to production much faster, smarter, and more efficiently.

With the proper tools in place, algorithms can take data from the production environment, understand the disposition of resources within that environment, and ensure the new application or change being delivered has enough of the right resources to support itself, rather than pulling resources from other applications. This is feasible with automation.

There are two stages to the automation process.

The first stage is automating the path from development to production. This could include AIOps features like pattern discovery, anomaly detection, and causal analysis. In this case, however, AIOps features are applied when allocating resources and understanding when new will be delivered into the production environment.

The second stage of automation comes into play when there is a new element in the production environment. What started as three changes a week has now reached three thousand because of the number being delivered into the environment through automation. Additionally, automation causes an increase in the modularity, ephemeralness, and IT systems are more distributed, making it nearly impossible to predict what kind of impact a new change will have on a production environment. With the proper AIOps technology in place, it becomes easier to foresee these implications.

The amount of data in today's business landscape only continues to increase. Without an analytical or diagnostic tool, development and operations teams are finding it nearly impossible to comprehend the performance of the production environment and to action events. This is when the role of AIOps becomes incredibly important and can save teams from severe consequences. Without the proper automation tools and strategy, companies will collapse as they become increasingly blind to system performance.

Will Cappelli is CTO, EMEA, at Moogsoft
Share this

The Latest

October 17, 2019

As the data generated by organizations grows, APM tools are now required to do a lot more than basic monitoring of metrics. Modern data is often raw and unstructured and requires more advanced methods of analysis. The tools must help dig deep into this data for both forensic analysis and predictive analysis. To extract more accurate and cheaper insights, modern APM tools use Big Data techniques to store, access, and analyze the multi-dimensional data ...

October 16, 2019

Modern enterprises are generating data at an unprecedented rate but aren't taking advantage of all the data available to them in order to drive real-time, actionable insights. According to a recent study commissioned by Actian, more than half of enterprises today are unable to efficiently manage nor effectively use data to drive decision-making ...

October 15, 2019

According to a study by Forrester Research, an enhanced UX design can increase the conversion rate by 400%. If UX has become the ultimate arbiter in determining the success or failure of a product or service, let us first understand what UX is all about ...

October 10, 2019

The requirements of an APM tool are now much more complex than they've ever been. Not only do they need to trace a user transaction across numerous microservices on the same system, but they also need to happen pretty fast ...

October 09, 2019

Performance monitoring is an old problem. As technology has advanced, we've had to evolve how we monitor applications. Initially, performance monitoring largely involved sending ICMP messages to start troubleshooting a down or slow application. Applications have gotten much more complex, so this is no longer enough. Now we need to know not just whether an application is broken, but why it broke. So APM has had to evolve over the years for us to get there. But how did this evolution take place, and what happens next? Let's find out ...

October 08, 2019

There are some IT organizations that are using DevOps methodology but are wary of getting bogged down in ITSM procedures. But without at least some ITSM controls in place, organizations lose their focus on systematic customer engagement, making it harder for them to scale ...

October 07, 2019
OK, I admit it. "Service modeling" is an awkward term, especially when you're trying to frame three rather controversial acronyms in the same overall place: CMDB, CMS and DDM. Nevertheless, that's exactly what we did in EMA's most recent research: <span style="font-style: italic;">Service Modeling in the Age of Cloud and Containers</span>. The goal was to establish a more holistic context for looking at the synergies and differences across all these areas ...
October 03, 2019

If you have deployed a Java application in production, you've probably encountered a situation where the application suddenly starts to take up a large amount of CPU. When this happens, application response becomes sluggish and users begin to complain about slow response. Often the solution to this problem is to restart the application and, lo and behold, the problem goes away — only to reappear a few days later. A key question then is: how to troubleshoot high CPU usage of a Java application? ...

October 02, 2019

Operations are no longer tethered tightly to a main office, as the headquarters-centric model has been retired in favor of a more decentralized enterprise structure. Rather than focus the business around a single location, enterprises are now comprised of a web of remote offices and individuals, where network connectivity has broken down the geographic barriers that in the past limited the availability of talent and resources. Key to the success of the decentralized enterprise model is a new generation of collaboration and communication tools ...

October 01, 2019

To better understand the AI maturity of businesses, Dotscience conducted a survey of 500 industry professionals. Research findings indicate that although enterprises are dedicating significant time and resources towards their AI deployments, many data science and ML teams don't have the adequate tools needed to properly collaborate on, build and deploy AI models efficiently ...