How AIOps Defuses the Impact of Change
July 12, 2021

Phil Tee

Share this

When you see distressing internet outages occur like the recent Fastly incident that threw a slew of websites offline, I am never surprised by how widespread the problem was, but paradoxically that it wasn't worse.

The infrastructure behind our digital world is mind-numbingly complex. The movement to cloud computing has added even more layers to the interconnectedness. So when a simple software update goes awry, despite the best efforts of quality control, the ripple effects can go far and wide. The digital economy in the US alone accounts for at least $1,849 billion annually, according to a 2020 report by the Bureau of Economic Analysis. So every moment offline matters.

Prompt troubleshooting is a herculean task — impossible, really, for the human mind alone. There's just too much information to sift through to quickly identify how a single change event precipitated such a widespread crash. IT teams must rely on artificial intelligence, machine learning and algorithms to find and repair the root cause of the problem.

The Perils of "Change"

What seems near effortless online to most of us — ordering food, a Zoom call, reading this article — is a staggeringly Byzantine interconnected flow of data packets, routers, modems, internet service providers, gateways, network exchanges, servers and applications. The interdependencies are at such a level that any meaningful amount of mappability is out of reach. For a human mind, you're talking about understanding more interdependencies than particles in the observable universe — a stunning amount of complexity.

Amid that landscape is the need to update software, whether to refresh the operating system, add features or bolster security. And from time to time, someone performs a routine update that has an unintended and unforeseen consequence. Identifying a problem before an outage occurs is largely a fool's errand because the scale of the situation is just too great. The key is to find the problem before a widespread outage occurs. In such an interconnected digital world, errors tend to cascade and propagate. Catching them early is paramount.

One simple update that goes awry could cripple e-commerce if widespread system outages lingered. The potential risk is profound. History has shown when unintended consequences snowball. Mexico reeled in the 1990s from the devaluation of the peso. The United States stumbled in the 2000s when collateralized debt obligations tied to the mortgage industry prompted a financial crisis.

To be clear, the Fastly incident wasn't a global crisis. The Fastly team responded remarkably well. But the outage underscored how trouble quickly can spread in the interconnected digital world. What's absolutely necessary is to pinpoint the problem immediately.

How Intelligent Observability Defuses the Threat

This is where intelligent observability comes in to analyze the impact of change. AIOps with observability work together to quickly spot the patterns and interconnections in the application data to identify the root cause of a problem before it cascades further and causes a widespread outage.

Every change, every software update, has some kind of record associated with it. So theoretically, when something goes wrong, a site reliability engineer or other IT expert would get an alert in which they could simply trace the issue back to the record of the change that triggered the issue. But in practice, the situation is very complicated. Thousands of other data points were created before and after this specific change occurred, so the challenge to identifying the root cause of the problem is linking the right data to the relevant change.

AIOps finds the right data. It applies algorithms to observability data such as metrics, logs and traces to identify anomalies, determine event significance, surface meaningful alerts and correlate data to provide valuable context. Observability makes the job easier by engineering the application infrastructure to make all of the data more observable. AIOps surfaces the right data amid an ocean of data so your IT teams can quickly spot and repair the problem.

Every change, every software update, leaves a clue behind. The problem is there are thousands and thousands of potential suspects. Intelligent observability can quickly solve the "whatdunnit" before any outage becomes much worse.

Phil Tee is CEO of Moogsoft
Share this

The Latest

March 27, 2023

To achieve maximum availability, IT leaders must employ domain-agnostic solutions that identify and escalate issues across all telemetry points. These technologies, which we refer to as Artificial Intelligence for IT Operations, create convergence — in other words, they provide IT and DevOps teams with the full picture of event management and downtime ...

March 23, 2023

APMdigest and leading IT research firm Enterprise Management Associates (EMA) are partnering to bring you the EMA-APMdigest Podcast, a new podcast focused on the latest technologies impacting IT Operations. In Episode 2 - Part 1 Pete Goldin, Editor and Publisher of APMdigest, discusses Network Observability with Shamus McGillicuddy, Vice President of Research, Network Infrastructure and Operations, at EMA ...

March 22, 2023

CIOs have stepped into the role of digital leader and strategic advisor, according to the 2023 Global CIO Survey from Logicalis ...

March 21, 2023

Synthetic monitoring is crucial to deploy code with confidence as catching bugs with E2E tests on staging is becoming increasingly difficult. It isn't trivial to provide realistic staging systems, especially because today's apps are intertwined with many third-party APIs ...

March 20, 2023

Recent EMA field research found that ServiceOps is either an active effort or a formal initiative in 78% of the organizations represented by a global panel of 400+ IT leaders. It is relatively early but gaining momentum across industries and organizations of all sizes globally ...

March 16, 2023

Managing availability and performance within SAP environments has long been a challenge for IT teams. But as IT environments grow more complex and dynamic, and the speed of innovation in almost every industry continues to accelerate, this situation is becoming a whole lot worse ...

March 15, 2023

Harnessing the power of network-derived intelligence and insights is critical in detecting today's increasingly sophisticated security threats across hybrid and multi-cloud infrastructure, according to a new research study from IDC ...

March 14, 2023

Recent research suggests that many organizations are paying for more software than they need. If organizations are looking to reduce IT spend, leaders should take a closer look at the tools being offered to employees, as not all software is essential ...

March 13, 2023

Organizations are challenged by tool sprawl and data source overload, according to the Grafana Labs Observability Survey 2023, with 52% of respondents reporting that their companies use 6 or more observability tools, including 11% that use 16 or more.

March 09, 2023

An array of tools purport to maintain availability — the trick is sorting through the noise to find the right one. Let us discuss why availability is so important and then unpack the ROI of deploying Artificial Intelligence for IT Operations (AIOps) during an economic downturn ...