Skip to main content

How to Choose an AIOps Tool

Phil Tee

Out with the old monolithic applications! And in with the new container and microservice-based IT environments!

This shift to containers and microservices is a key component of the digital transformation and shift to an all encompassing digital experience that modern customers have grown to expect. But these seismic shifts have also presented a nearly impossible task for IT teams: achieve ceaseless innovation whilst maintaining an ever more complex infrastructure environment, one that tends to produce vast volumes of data. Oh and can you also ensure that these systems are continuously available?

Once a low-priority task, infrastructure monitoring is now imperative to maintaining system assurance and keeping up with the blinding pace of change.

In the good old days, IT teams could manually monitor infrastructures that changed over months and maybe years. Not so today. Modern application programming interfaces (APIs) that connect computers or programs are highly flexible leading to constant change in application and network topology. The increase in data production and shift to ephemeral machines has consequently rendered manual monitoring impossible for human operators.

So DevOps, SRE and IT operations teams must embrace change while minimizing and mitigating outages. And the secret sauce for making this happen is an effective artificial intelligence for IT operations (AIOps) platform.

AIOps tools use artificial intelligence (AI) and machine learning (ML) to streamline the monitoring of operational data from applications, cloud services, networks and infrastructures. The tool's algorithmic approach to root cause helps DevOps and SRE teams quickly identify and fix issues affecting the performance of an organization's apps and vital services.

Maintaining this uptime and reducing mean time to resolution (MMTR) is critically important in our digital economy where customers, partners and employees rely on seamlessly running systems. And downtime equals big dollars.

So, how do you choose the right AIOps tool to help improve system performance? And how do you identify a real AIOps tool?

Can the Real AIOps Please Stand Up?

Infrastructure monitoring has evolved with our evolving IT environments. While teams historically tried to predict system failures with lists of rules, AIOps is much more flexible and reliable. AIOps replaces rules with AI- and ML-based algorithms that infer the existence of issues and discover incidents that would have evaded rules.

This operational difference is critical. Rules-based legacy solutions can not handle today's complex and unpredictable issues. And they simply can not keep up with the massive amounts of data that modern IT environments pump out every day.

To implement a true AIOps platform and avoid deploying a monitoring tool masquerading as one, make sure you can answer "yes" to the following:

■ Does my AIOps solution automate anomaly detection?

■ Is it operational without definitions or a list of dependencies?

■ Does the vendor do its own data science? How many patents do they have?

■ Does the system operate under changing conditions like shifting data formats, dependencies and applications?

■ Does the solution cover all observability data?

■ Can end-users run the system?

Why is Real AIOps Beneficial?

The advantages of AIOps are likely apparent to those struggling to monitor modern application infrastructures to increase uptime for consumers who expect on-demand digital products and services. Here are specifics around what IT teams should expect, especially from newer providers that offer more innovative cloud and Saas solutions:

Decreased downtime: AIOps tools catch incidents as they occur and can even predict service-impact incidents before they affect businesses. With these tools, teams can slash the amount of downtime in applications by at least half.

Automated cognitive load: Alert noise and false alarms pull teams away from their tasks and kill productivity. AIOps tools can reduce false alerts by 99%.

Reduced cost of ownership: Rules-based systems require constant alterations in monitoring system configurations. AIOps, on the other hand, can handle continuous change.

We live in a digital economy where the digital experience defines the customer experience. And businesses simply cannot afford extended downtime. Modern IT teams need modern AIOps solutions to help avoid outages, improve responsiveness and ensure top performance of apps and services.

The Latest

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...

In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

Image
Broadcom

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...

Today, organizations are generating and processing more data than ever before. From training AI models to running complex analytics, massive datasets have become the backbone of innovation. However, as businesses embrace the cloud for its scalability and flexibility, a new challenge arises: managing the soaring costs of storing and processing this data ...

How to Choose an AIOps Tool

Phil Tee

Out with the old monolithic applications! And in with the new container and microservice-based IT environments!

This shift to containers and microservices is a key component of the digital transformation and shift to an all encompassing digital experience that modern customers have grown to expect. But these seismic shifts have also presented a nearly impossible task for IT teams: achieve ceaseless innovation whilst maintaining an ever more complex infrastructure environment, one that tends to produce vast volumes of data. Oh and can you also ensure that these systems are continuously available?

Once a low-priority task, infrastructure monitoring is now imperative to maintaining system assurance and keeping up with the blinding pace of change.

In the good old days, IT teams could manually monitor infrastructures that changed over months and maybe years. Not so today. Modern application programming interfaces (APIs) that connect computers or programs are highly flexible leading to constant change in application and network topology. The increase in data production and shift to ephemeral machines has consequently rendered manual monitoring impossible for human operators.

So DevOps, SRE and IT operations teams must embrace change while minimizing and mitigating outages. And the secret sauce for making this happen is an effective artificial intelligence for IT operations (AIOps) platform.

AIOps tools use artificial intelligence (AI) and machine learning (ML) to streamline the monitoring of operational data from applications, cloud services, networks and infrastructures. The tool's algorithmic approach to root cause helps DevOps and SRE teams quickly identify and fix issues affecting the performance of an organization's apps and vital services.

Maintaining this uptime and reducing mean time to resolution (MMTR) is critically important in our digital economy where customers, partners and employees rely on seamlessly running systems. And downtime equals big dollars.

So, how do you choose the right AIOps tool to help improve system performance? And how do you identify a real AIOps tool?

Can the Real AIOps Please Stand Up?

Infrastructure monitoring has evolved with our evolving IT environments. While teams historically tried to predict system failures with lists of rules, AIOps is much more flexible and reliable. AIOps replaces rules with AI- and ML-based algorithms that infer the existence of issues and discover incidents that would have evaded rules.

This operational difference is critical. Rules-based legacy solutions can not handle today's complex and unpredictable issues. And they simply can not keep up with the massive amounts of data that modern IT environments pump out every day.

To implement a true AIOps platform and avoid deploying a monitoring tool masquerading as one, make sure you can answer "yes" to the following:

■ Does my AIOps solution automate anomaly detection?

■ Is it operational without definitions or a list of dependencies?

■ Does the vendor do its own data science? How many patents do they have?

■ Does the system operate under changing conditions like shifting data formats, dependencies and applications?

■ Does the solution cover all observability data?

■ Can end-users run the system?

Why is Real AIOps Beneficial?

The advantages of AIOps are likely apparent to those struggling to monitor modern application infrastructures to increase uptime for consumers who expect on-demand digital products and services. Here are specifics around what IT teams should expect, especially from newer providers that offer more innovative cloud and Saas solutions:

Decreased downtime: AIOps tools catch incidents as they occur and can even predict service-impact incidents before they affect businesses. With these tools, teams can slash the amount of downtime in applications by at least half.

Automated cognitive load: Alert noise and false alarms pull teams away from their tasks and kill productivity. AIOps tools can reduce false alerts by 99%.

Reduced cost of ownership: Rules-based systems require constant alterations in monitoring system configurations. AIOps, on the other hand, can handle continuous change.

We live in a digital economy where the digital experience defines the customer experience. And businesses simply cannot afford extended downtime. Modern IT teams need modern AIOps solutions to help avoid outages, improve responsiveness and ensure top performance of apps and services.

The Latest

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...

In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

Image
Broadcom

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...

Today, organizations are generating and processing more data than ever before. From training AI models to running complex analytics, massive datasets have become the backbone of innovation. However, as businesses embrace the cloud for its scalability and flexibility, a new challenge arises: managing the soaring costs of storing and processing this data ...