Skip to main content

100G is Increasingly Popular, and It's Creating a Host of Management Challenges

Nadeem Zahid
cPacket Networks

Name virtually any technology trend — digital transformation, cloud-first operations, datacenter consolidation, mobility, streaming data, AI/ML, the application explosion, etc. — they all have one thing in common: an insatiable need for higher bandwidth (and often, low latency). The result is a steady push to move 10Gbps and 25Gbps network infrastructure toward the edge, and increasing adoption of 100Gbps in enterprise core, datacenter and service provider networks.

Initial deployments focused on backbone interconnects (historically a dual-ring failover topology; more recently mesh connectivity), primarily driven by north-south traffic. Data center adoption has followed, generally in spine-leaf architecture to handle increases in east-west connections.

Beyond a hunger for bandwidth, 100G is having a moment for several reasons: a commodity-derived drop in cost, increasing availability of 100G-enabled components, and the derivative ability to easily break 100G into 10/25G line rates. In light of these trends, analyst firm Dell'Oro expects 100G adoption to hit its stride this year and remain strong over the next five years.

Nobody in their right mind disputes the notion that enterprises and service providers will continue to adopt ever-faster networks. However, the same thing that makes 100G desirable — speed — conspires to create a host of challenges when trying to manage and monitor the infrastructure. The simple truth is that the faster the network, the more quickly things can go wrong. That makes monitoring for things like regulatory compliance, load balancing, incident response/forensics, capacity planning, etc., more important than ever.

At 10G, every packet is transmitted in 67 nanoseconds; at 100G that increases tenfold, with packets flying by at 6.7 nanoseconds. And therein lies the problem: when it comes to 100G, traditional management and monitoring infrastructure can't keep up.

The line-rate requirement varies based on where infrastructure sits in the monitoring stack. Network TAPs must be capable of mirroring data at 100G line speeds to packet brokers and tools. Packet brokers must handle that 100G traffic simultaneously on multiple ports, and process and forward each packet at line rate to the tool rail. Capture devices need to be able to achieve 100G bursts in capture-to-disk process. And any analysis layer must ingest information at 100G speeds to allow correlation, analysis and visualization.

Complicating matters are various "smart" features, each of which demand additional processing resources. As an example, packet brokers might include filtering, slicing and deduplication capabilities. If the system is already struggling with the line rate, any increased processing load degrades performance further.

For any infrastructure not designed with 100G in mind, the failure mode is inevitably the same: lost or dropped packets. That, in turn, results in network blind spots. When visibility is the goal, blind spots are — at the risk of oversimplification — bad. The impact can be incorrect calculations, slower time-to-resolution or incident response, longer malware dwell time, greater application performance fluctuation, compliance or SLA challenges and more.

Lossless monitoring requires that every part of the visibility stack is designed around 100G line speeds. Packet brokers in particular, given their central role in visibility infrastructure, are a critical chokepoint. Where possible, a two-tier monitoring architecture is recommended with a high-density 10/25/100G aggregation layer to aggregate TAPs and tools, and a high-performance 100G core packet broker to process and service the packets. While upgrades are possible, beware as they add cost yet may still not achieve true 100G line speeds when smart features centralize and share processing requirements at the core. Newer systems with a distributed/dedicated per-port processing architecture (versus shared central processing) are specifically designed to accommodate 100G line rates and eliminate these bottlenecks.

The overarching point is that desire for 100G performance cannot override the need for 100G visibility, or the entire network can suffer as a result. The visibility infrastructure needs to match the forwarding infrastructure. While 100G line rates are certainly possible with the latest monitoring equipment and software, IT teams must not assume that existing network visibility systems can keep up with the new load.

Nadeem Zahid is VP of Product Management & Marketing at cPacket Networks

The Latest

An overwhelming majority of IT leaders (95%) believe the upcoming wave of AI-powered digital transformation is set to be the most impactful and intensive seen thus far, according to The Science of Productivity: AI, Adoption, And Employee Experience, a new report from Nexthink ...

Overall outage frequency and the general level of reported severity continue to decline, according to the Outage Analysis 2025 from Uptime Institute. However, cyber security incidents are on the rise and often have severe, lasting impacts ...

In March, New Relic published the State of Observability for Media and Entertainment Report to share insights, data, and analysis into the adoption and business value of observability across the media and entertainment industry. Here are six key takeaways from the report ...

Regardless of their scale, business decisions often take time, effort, and a lot of back-and-forth discussion to reach any sort of actionable conclusion ... Any means of streamlining this process and getting from complex problems to optimal solutions more efficiently and reliably is key. How can organizations optimize their decision-making to save time and reduce excess effort from those involved? ...

As enterprises accelerate their cloud adoption strategies, CIOs are routinely exceeding their cloud budgets — a concern that's about to face additional pressure from an unexpected direction: uncertainty over semiconductor tariffs. The CIO Cloud Trends Survey & Report from Azul reveals the extent continued cloud investment despite cost overruns, and how organizations are attempting to bring spending under control ...

Image
Azul

According to Auvik's 2025 IT Trends Report, 60% of IT professionals feel at least moderately burned out on the job, with 43% stating that their workload is contributing to work stress. At the same time, many IT professionals are naming AI and machine learning as key areas they'd most like to upskill ...

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

100G is Increasingly Popular, and It's Creating a Host of Management Challenges

Nadeem Zahid
cPacket Networks

Name virtually any technology trend — digital transformation, cloud-first operations, datacenter consolidation, mobility, streaming data, AI/ML, the application explosion, etc. — they all have one thing in common: an insatiable need for higher bandwidth (and often, low latency). The result is a steady push to move 10Gbps and 25Gbps network infrastructure toward the edge, and increasing adoption of 100Gbps in enterprise core, datacenter and service provider networks.

Initial deployments focused on backbone interconnects (historically a dual-ring failover topology; more recently mesh connectivity), primarily driven by north-south traffic. Data center adoption has followed, generally in spine-leaf architecture to handle increases in east-west connections.

Beyond a hunger for bandwidth, 100G is having a moment for several reasons: a commodity-derived drop in cost, increasing availability of 100G-enabled components, and the derivative ability to easily break 100G into 10/25G line rates. In light of these trends, analyst firm Dell'Oro expects 100G adoption to hit its stride this year and remain strong over the next five years.

Nobody in their right mind disputes the notion that enterprises and service providers will continue to adopt ever-faster networks. However, the same thing that makes 100G desirable — speed — conspires to create a host of challenges when trying to manage and monitor the infrastructure. The simple truth is that the faster the network, the more quickly things can go wrong. That makes monitoring for things like regulatory compliance, load balancing, incident response/forensics, capacity planning, etc., more important than ever.

At 10G, every packet is transmitted in 67 nanoseconds; at 100G that increases tenfold, with packets flying by at 6.7 nanoseconds. And therein lies the problem: when it comes to 100G, traditional management and monitoring infrastructure can't keep up.

The line-rate requirement varies based on where infrastructure sits in the monitoring stack. Network TAPs must be capable of mirroring data at 100G line speeds to packet brokers and tools. Packet brokers must handle that 100G traffic simultaneously on multiple ports, and process and forward each packet at line rate to the tool rail. Capture devices need to be able to achieve 100G bursts in capture-to-disk process. And any analysis layer must ingest information at 100G speeds to allow correlation, analysis and visualization.

Complicating matters are various "smart" features, each of which demand additional processing resources. As an example, packet brokers might include filtering, slicing and deduplication capabilities. If the system is already struggling with the line rate, any increased processing load degrades performance further.

For any infrastructure not designed with 100G in mind, the failure mode is inevitably the same: lost or dropped packets. That, in turn, results in network blind spots. When visibility is the goal, blind spots are — at the risk of oversimplification — bad. The impact can be incorrect calculations, slower time-to-resolution or incident response, longer malware dwell time, greater application performance fluctuation, compliance or SLA challenges and more.

Lossless monitoring requires that every part of the visibility stack is designed around 100G line speeds. Packet brokers in particular, given their central role in visibility infrastructure, are a critical chokepoint. Where possible, a two-tier monitoring architecture is recommended with a high-density 10/25/100G aggregation layer to aggregate TAPs and tools, and a high-performance 100G core packet broker to process and service the packets. While upgrades are possible, beware as they add cost yet may still not achieve true 100G line speeds when smart features centralize and share processing requirements at the core. Newer systems with a distributed/dedicated per-port processing architecture (versus shared central processing) are specifically designed to accommodate 100G line rates and eliminate these bottlenecks.

The overarching point is that desire for 100G performance cannot override the need for 100G visibility, or the entire network can suffer as a result. The visibility infrastructure needs to match the forwarding infrastructure. While 100G line rates are certainly possible with the latest monitoring equipment and software, IT teams must not assume that existing network visibility systems can keep up with the new load.

Nadeem Zahid is VP of Product Management & Marketing at cPacket Networks

The Latest

An overwhelming majority of IT leaders (95%) believe the upcoming wave of AI-powered digital transformation is set to be the most impactful and intensive seen thus far, according to The Science of Productivity: AI, Adoption, And Employee Experience, a new report from Nexthink ...

Overall outage frequency and the general level of reported severity continue to decline, according to the Outage Analysis 2025 from Uptime Institute. However, cyber security incidents are on the rise and often have severe, lasting impacts ...

In March, New Relic published the State of Observability for Media and Entertainment Report to share insights, data, and analysis into the adoption and business value of observability across the media and entertainment industry. Here are six key takeaways from the report ...

Regardless of their scale, business decisions often take time, effort, and a lot of back-and-forth discussion to reach any sort of actionable conclusion ... Any means of streamlining this process and getting from complex problems to optimal solutions more efficiently and reliably is key. How can organizations optimize their decision-making to save time and reduce excess effort from those involved? ...

As enterprises accelerate their cloud adoption strategies, CIOs are routinely exceeding their cloud budgets — a concern that's about to face additional pressure from an unexpected direction: uncertainty over semiconductor tariffs. The CIO Cloud Trends Survey & Report from Azul reveals the extent continued cloud investment despite cost overruns, and how organizations are attempting to bring spending under control ...

Image
Azul

According to Auvik's 2025 IT Trends Report, 60% of IT professionals feel at least moderately burned out on the job, with 43% stating that their workload is contributing to work stress. At the same time, many IT professionals are naming AI and machine learning as key areas they'd most like to upskill ...

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ...