The OpenTelemetry project is merging a profiling data model into its specification and working towards a stable implementation this year.
Austin Parker, Director of Open Source at Honeycomb, said: "Profiling is a method to dynamically inspect the behavior and performance of application code at run-time. Continuous profiling gives insights into resource utilization at a code-level and allows for this profiling data to be stored, queried, and analyzed over time and across different attributes. It’s an important technique for developers and performance engineers to understand exactly what’s happening in their code. OpenTelemetry’s profiling signal expands upon the work that has been done in this space and, as a first for the industry, connects profiles with other telemetry signals from applications and infrastructure. This allows developers and operators to correlate resource exhaustion or poor user experience across their services with not just the specific service or pod being impacted, but the function or line of code most responsible for it."
OpenTelemetry also announced the following two donations to accelerate the delivery and implementation of OpenTelemetry profiling:
- Elastic has pledged to donate their proprietary eBPF-based profiling agent
- Splunk has begun the process of donating their .NET based profiler
Profiles will support bi-directional links between themselves and other signals, such as logs, metrics, and traces. You’ll be able to easily jump from resource telemetry to a corresponding profile. For example:
- Metrics to profiles: You will be able to go from a spike in CPU usage or memory usage to the specific pieces of the code which are consuming that resource
- Traces to profiles: You will be able to understand not just the location of latency across your services, but when that latency is caused by pieces of the code it will be reflected in a profile attached to a trace or span
- Logs to profiles: Logs often give the context that something is wrong, but profiling will allow you to go from just tracking something (i.e. Out Of Memory errors) to seeing exactly which parts of the code are using up memory resources
More generally profiling helps deliver on the promise of observability by making it easier for users to query and understand an entire new dimension about their applications with minimal additional code/effort.
Hot Topic
The Latest
Every digital customer interaction, every cloud deployment, and every AI model depends on the same foundation: the ability to see, understand, and act on data in real time ... Recent data from Splunk confirms that 74% of the business leaders believe observability is essential to monitoring critical business processes, and 66% feel it's key to understanding user journeys. Because while the unknown is inevitable, observability makes it manageable. Let's explore why ...
Organizations that perform regular audits and assessments of AI system performance and compliance are over three times more likely to achieve high GenAI value than organizations that do not, according to a survey by Gartner ...
Kubernetes has become the backbone of cloud infrastructure, but it's also one of its biggest cost drivers. Recent research shows that 98% of senior IT leaders say Kubernetes now drives cloud spend, yet 91% still can't optimize it effectively. After years of adoption, most organizations have moved past discovery. They know container sprawl, idle resources and reactive scaling inflate costs. What they don't know is how to fix it ...
Artificial intelligence is no longer a future investment. It's already embedded in how we work — whether through copilots in productivity apps, real-time transcription tools in meetings, or machine learning models fueling analytics and personalization. But while enterprise adoption accelerates, there's one critical area many leaders have yet to examine: Can your network actually support AI at the speed your users expect? ...
The more technology businesses invest in, the more potential attack surfaces they have that can be exploited. Without the right continuity plans in place, the disruptions caused by these attacks can bring operations to a standstill and cause irreparable damage to an organization. It's essential to take the time now to ensure your business has the right tools, processes, and recovery initiatives in place to weather any type of IT disaster that comes up. Here are some effective strategies you can follow to achieve this ...
In today's fast-paced AI landscape, CIOs, IT leaders, and engineers are constantly challenged to manage increasingly complex and interconnected systems. The sheer scale and velocity of data generated by modern infrastructure can be overwhelming, making it difficult to maintain uptime, prevent outages, and create a seamless customer experience. This complexity is magnified by the industry's shift towards agentic AI ...
In MEAN TIME TO INSIGHT Episode 19, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA explains the cause of the AWS outage in October ...
The explosion of generative AI and machine learning capabilities has fundamentally changed the conversation around cloud migration. It's no longer just about modernization or cost savings — it's about being able to compete in a market where AI is rapidly becoming table stakes. Companies that can't quickly spin up AI workloads, feed models with data at scale, or experiment with new capabilities are falling behind faster than ever before. But here's what I'm seeing: many organizations want to capitalize on AI, but they're stuck ...
On September 16, the world celebrated the 10th annual IT Pro Day, giving companies a chance to laud the professionals who serve as the backbone to almost every successful business across the globe. Despite the growing importance of their roles, many IT pros still work in the background and often go underappreciated ...
Artificial Intelligence (AI) is reshaping observability, and observability is becoming essential for AI. This is a two-way relationship that is increasingly relevant as enterprises scale generative AI ... This dual role makes AI and observability inseparable. In this blog, I cover more details of each side ...