Pepperdata Introduces Observability and Optimization for Spark on Kubernetes
May 25, 2021
Share this

Pepperdata announced that the Pepperdata product portfolio now provides autonomous optimization and observability for Spark applications running on Kubernetes.

Kubernetes is a key part of the modern hybrid, multi-cloud architecture in today’s enterprises. Spark is the #1 big data application running on Kubernetes, according to a recent survey of enterprise users. As big data applications move from Spark on legacy systems to Spark on Kubernetes, the performance of these applications can change dramatically.

Pepperdata offers full-stack observability for Spark on Kubernetes, allowing developers to manually tune their applications, while autonomously optimizing resources at run time. The combination of manual and autonomous tuning is necessary to deliver the best price and performance for these applications. Pepperdata uses machine learning across clusters, containers, pods, nodes, users and workflows to give you a complete understanding of your environment.

Pepperdata will automatically optimize Kubernetes resources while providing a correlated and granular understanding of the applications and infrastructure. Observability provides actionable information to debug and understand complex applications, and autonomous optimization ensures that the compute resources are used efficiently.

Features include:

- Autonomous optimization of resources and workloads on Amazon EKS, HPE Bluedata and Red Hat OpenShift.

- Application and infrastructure observability for Spark on EKS, Bluedata and OpenShift as well as YARN.

- A self-service dashboard so developers can manually tune using recommendations for speed or resource utilization.

- Detailed usage attribution for chargeback.

“Kubernetes is becoming increasingly important for a unified IT infrastructure, both in the cloud and the data center. Spark is the number one big data application moving to the cloud, but Spark applications tend to be quite inefficient. Optimization is key to successful implementations,” said Ash Munshi, CEO, Pepperdata. “We saw this early on with our customers, which is why we invested in the development of Spark on Kubernetes, together with Red Hat, Palantir and Google.”

Share this

The Latest

June 29, 2022

When it comes to AIOps predictions, there's no question of AI's value in predictive intelligence and faster problem resolution for IT teams. In fact, Gartner has reported that there is no future for IT Operations without AIOps. So, where is AIOps headed in five years? Here's what the vendors and thought leaders in the AIOps space had to share ...

June 27, 2022

A new study by OpsRamp on the state of the Managed Service Providers (MSP) market concludes that MSPs face a market of bountiful opportunities but must prepare for this growth by embracing complex technologies like hybrid cloud management, root cause analysis and automation ...

June 27, 2022

Hybrid work adoption and the accelerated pace of digital transformation are driving an increasing need for automation and site reliability engineering (SRE) practices, according to new research. In a new survey almost half of respondents (48.2%) said automation is a way to decrease Mean Time to Resolution/Repair (MTTR) and improve service management ...

June 23, 2022

Digital businesses don't invest in monitoring for monitoring's sake. They do it to make the business run better. Every dollar spent on observability — every hour your team spends using monitoring tools or responding to what they reveal — should tie back directly to business outcomes: conversions, revenues, brand equity. If they don't? You might be missing the forest for the trees ...

June 22, 2022

Every day, companies are missing customer experience (CX) "red flags" because they don't have the tools to observe CX processes or metrics. Even basic errors or defects in automated customer interactions are left undetected for days, weeks or months, leading to widespread customer dissatisfaction. In fact, poor CX and digital technology investments are costing enterprises billions of dollars in lost potential revenue ...

June 21, 2022

Organizations are moving to microservices and cloud native architectures at an increasing pace. The primary incentive for these transformation projects is typically to increase the agility and velocity of software release and product innovation. These dynamic systems, however, are far more complex to manage and monitor, and they generate far higher data volumes ...

June 16, 2022

Global IT teams adapted to remote work in 2021, resolving employee tickets 23% faster than the year before as overall resolution time for IT tickets went down by 7 hours, according to the Freshservice Service Management Benchmark Report from Freshworks ...

June 15, 2022

Once upon a time data lived in the data center. Now data lives everywhere. All this signals the need for a new approach to data management, a next-gen solution ...

June 14, 2022

Findings from the 2022 State of Edge Messaging Report from Ably and Coleman Parkes Research show that most organizations (65%) that have built edge messaging capabilities in house have experienced an outage or significant downtime in the last 12-18 months. Most of the current in-house real-time messaging services aren't cutting it ...

June 13, 2022
Today's users want a complete digital experience when dealing with a software product or system. They are not content with the page load speeds or features alone but want the software to perform optimally in an omnichannel environment comprising multiple platforms, browsers, devices, and networks. This calls into question the role of load testing services to check whether the given software under testing can perform optimally when subjected to peak load ...