Root-Cause Analysis of Application Performance Problems
November 12, 2013

Charley Rich
Nastel Technologies

Share this

I first came upon the term root-cause analysis (RCA) while working at a network management startup. The concept was to determine why a problem occurred so that repair could happen sooner and service restored. To do this required a discovery of the topology of a network and its devices in order to understand where a problem could occur and the relationship between the various parts. Monitoring was necessary in order to identify that a failure occurred and provide notification.

However, the challenge in doing this was that many failure events are received in seemingly random order; thus, it is very difficult to differentiate which events signified symptoms of the problem and which event represented the actual cause. To resolve this, some solutions constructed elaborate causality chains in the hope you could follow them backwards in time to the "root-cause". This is akin to following smoke and having it lead you to the fire. Well it does work, if you do it fast enough and before the whole forest is in flames.

The obvious next thing to do was apply this to applications. It certainly seemed like a good idea at the time ... but it turned out to be much harder than expected. Why harder? Applications are far more complex than networks with many more variations in behavior and relationship. So, instead monitoring systems were applied to the various silos of application architecture such as web servers, application servers, middleware, databases and others.

For many years the focus of APM was on making the application server run better. And from that perspective, it was successful. However, while the application server became more reliable and ran faster, the two key features IT Operations management desire: getting alerted to problems before the end user is affected and being pointed in the right direction have not improved much.

Part of the difficulty in this sort of multiplicity of monitoring tools world is that there so many sources of events and so many moving parts. Is the cause capacity, a stuck message, configuration issues or even worse a misunderstanding of business requirements? Perhaps, the application is running just fine with all indicators green, but the results aren't what the business expected. Or it works fine for users in one group, but not for another. These are very difficult problems to unravel.

An approach Forrester Research suggests is to bring the events from the various sources to a single pain of glass and perform a root-cause analysis. The suggestion is made to use a technology called Complex Event Processing (CEP) to search in real-time for patterns based on events from multiple sources that together describe a problem.

CEP is very good at identifying situations spanning multiple event streams, correlating the individual events together into the "big picture", the situation. Analogous to this is the concept in QA of test cases. Think of situations as the test cases that occur spontaneously in production. APM is not for the faint of heart.

CEP can tie the seemingly unrelated events together into a picture that tells a story, what happened and what triggered it. CEP, using rules is of course dependent on the quality and completeness of those rules. But, that is something that grows ever better over time. A new situation can be described and prevented from ever causing harm again. Without the relationship between the events from the various sources, that would not be possible. We would just be fixing the web server or the database or the application server. With this approach, we are fixing the problem.

CEP represents an actionable form of analytics. You can add CEP analytics to your APM including your currently deployed monitoring solutions as it is inherently a multi-source approach. Utilizing this and delivering root-cause analysis can improve your incident management process. It can help you achieve the IT Ops goals of: getting alerted to problems before the end user is affected and being pointed in the right direction.

Charley Rich is VP Product Management and Marketing at Nastel Technologies.

Charley Rich is VP Product Management and Marketing at Nastel Technologies and has over 28 years of technical, hands-on experience working with large-scale customers to meet their application and systems management requirements. Prior to joining Nastel, Charley was Product Manager for IBM's Tivoli Application Dependency Discovery Manager software, where he co-authored an IBM Redbook, charted the product roadmap, managed an agile requirements process and was recognized for his accomplishments by winning the Tivoli General Manager's Award. Recently, Charley was granted a patent for an Application Discovery and Monitoring process.
Share this

The Latest

December 03, 2024

We're at a critical inflection point in the data landscape. In our recent survey of executive leaders in the data space — The State of Data Observability in 2024 — we found that while 92% of organizations now consider data reliability core to their strategy, most still struggle with fundamental visibility challenges ...

December 02, 2024

From the accelerating adoption of artificial intelligence (AI) and generative AI (GenAI) to the ongoing challenges of cost optimization and security, these IT leaders are navigating a complex and rapidly evolving landscape. Here's what you should know about the top priorities shaping the year ahead ...

November 26, 2024

In the heat of the holiday online shopping rush, retailers face persistent challenges such as increased web traffic or cyber threats that can lead to high-impact outages. With profit margins under high pressure, retailers are prioritizing strategic investments to help drive business value while improving the customer experience ...

November 25, 2024

In a fast-paced industry where customer service is a priority, the opportunity to use AI to personalize products and services, revolutionize delivery channels, and effectively manage peaks in demand such as Black Friday and Cyber Monday are vast. By leveraging AI to streamline demand forecasting, optimize inventory, personalize customer interactions, and adjust pricing, retailers can have a better handle on these stress points, and deliver a seamless digital experience ...

November 21, 2024

Broad proliferation of cloud infrastructure combined with continued support for remote workers is driving increased complexity and visibility challenges for network operations teams, according to new research conducted by Dimensional Research and sponsored by Broadcom ...

November 20, 2024

New research from ServiceNow and ThoughtLab reveals that less than 30% of banks feel their transformation efforts are meeting evolving customer digital needs. Additionally, 52% say they must revamp their strategy to counter competition from outside the sector. Adapting to these challenges isn't just about staying competitive — it's about staying in business ...

November 19, 2024

Leaders in the financial services sector are bullish on AI, with 95% of business and IT decision makers saying that AI is a top C-Suite priority, and 96% of respondents believing it provides their business a competitive advantage, according to Riverbed's Global AI and Digital Experience Survey ...

November 18, 2024

SLOs have long been a staple for DevOps teams to monitor the health of their applications and infrastructure ... Now, as digital trends have shifted, more and more teams are looking to adapt this model for the mobile environment. This, however, is not without its challenges ...

November 14, 2024

Modernizing IT infrastructure has become essential for organizations striving to remain competitive. This modernization extends beyond merely upgrading hardware or software; it involves strategically leveraging new technologies like AI and cloud computing to enhance operational efficiency, increase data accessibility, and improve the end-user experience ...

November 13, 2024

AI sure grew fast in popularity, but are AI apps any good? ... If companies are going to keep integrating AI applications into their tech stack at the rate they are, then they need to be aware of AI's limitations. More importantly, they need to evolve their testing regiment ...