Skip to main content

Root-Cause Analysis of Application Performance Problems

Charley Rich

I first came upon the term root-cause analysis (RCA) while working at a network management startup. The concept was to determine why a problem occurred so that repair could happen sooner and service restored. To do this required a discovery of the topology of a network and its devices in order to understand where a problem could occur and the relationship between the various parts. Monitoring was necessary in order to identify that a failure occurred and provide notification.

However, the challenge in doing this was that many failure events are received in seemingly random order; thus, it is very difficult to differentiate which events signified symptoms of the problem and which event represented the actual cause. To resolve this, some solutions constructed elaborate causality chains in the hope you could follow them backwards in time to the "root-cause". This is akin to following smoke and having it lead you to the fire. Well it does work, if you do it fast enough and before the whole forest is in flames.

The obvious next thing to do was apply this to applications. It certainly seemed like a good idea at the time ... but it turned out to be much harder than expected. Why harder? Applications are far more complex than networks with many more variations in behavior and relationship. So, instead monitoring systems were applied to the various silos of application architecture such as web servers, application servers, middleware, databases and others.

For many years the focus of APM was on making the application server run better. And from that perspective, it was successful. However, while the application server became more reliable and ran faster, the two key features IT Operations management desire: getting alerted to problems before the end user is affected and being pointed in the right direction have not improved much.

Part of the difficulty in this sort of multiplicity of monitoring tools world is that there so many sources of events and so many moving parts. Is the cause capacity, a stuck message, configuration issues or even worse a misunderstanding of business requirements? Perhaps, the application is running just fine with all indicators green, but the results aren't what the business expected. Or it works fine for users in one group, but not for another. These are very difficult problems to unravel.

An approach Forrester Research suggests is to bring the events from the various sources to a single pain of glass and perform a root-cause analysis. The suggestion is made to use a technology called Complex Event Processing (CEP) to search in real-time for patterns based on events from multiple sources that together describe a problem.

CEP is very good at identifying situations spanning multiple event streams, correlating the individual events together into the "big picture", the situation. Analogous to this is the concept in QA of test cases. Think of situations as the test cases that occur spontaneously in production. APM is not for the faint of heart.

CEP can tie the seemingly unrelated events together into a picture that tells a story, what happened and what triggered it. CEP, using rules is of course dependent on the quality and completeness of those rules. But, that is something that grows ever better over time. A new situation can be described and prevented from ever causing harm again. Without the relationship between the events from the various sources, that would not be possible. We would just be fixing the web server or the database or the application server. With this approach, we are fixing the problem.

CEP represents an actionable form of analytics. You can add CEP analytics to your APM including your currently deployed monitoring solutions as it is inherently a multi-source approach. Utilizing this and delivering root-cause analysis can improve your incident management process. It can help you achieve the IT Ops goals of: getting alerted to problems before the end user is affected and being pointed in the right direction.

Charley Rich is VP Product Management and Marketing at Nastel Technologies.

Hot Topics

The Latest

As businesses increasingly rely on high-performance applications to deliver seamless user experiences, the demand for fast, reliable, and scalable data storage systems has never been greater. Redis — an open-source, in-memory data structure store — has emerged as a popular choice for use cases ranging from caching to real-time analytics. But with great performance comes the need for vigilant monitoring ...

Kubernetes was not initially designed with AI's vast resource variability in mind, and the rapid rise of AI has exposed Kubernetes limitations, particularly when it comes to cost and resource efficiency. Indeed, AI workloads differ from traditional applications in that they require a staggering amount and variety of compute resources, and their consumption is far less consistent than traditional workloads ... Considering the speed of AI innovation, teams cannot afford to be bogged down by these constant infrastructure concerns. A solution is needed ...

AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...

Root-Cause Analysis of Application Performance Problems

Charley Rich

I first came upon the term root-cause analysis (RCA) while working at a network management startup. The concept was to determine why a problem occurred so that repair could happen sooner and service restored. To do this required a discovery of the topology of a network and its devices in order to understand where a problem could occur and the relationship between the various parts. Monitoring was necessary in order to identify that a failure occurred and provide notification.

However, the challenge in doing this was that many failure events are received in seemingly random order; thus, it is very difficult to differentiate which events signified symptoms of the problem and which event represented the actual cause. To resolve this, some solutions constructed elaborate causality chains in the hope you could follow them backwards in time to the "root-cause". This is akin to following smoke and having it lead you to the fire. Well it does work, if you do it fast enough and before the whole forest is in flames.

The obvious next thing to do was apply this to applications. It certainly seemed like a good idea at the time ... but it turned out to be much harder than expected. Why harder? Applications are far more complex than networks with many more variations in behavior and relationship. So, instead monitoring systems were applied to the various silos of application architecture such as web servers, application servers, middleware, databases and others.

For many years the focus of APM was on making the application server run better. And from that perspective, it was successful. However, while the application server became more reliable and ran faster, the two key features IT Operations management desire: getting alerted to problems before the end user is affected and being pointed in the right direction have not improved much.

Part of the difficulty in this sort of multiplicity of monitoring tools world is that there so many sources of events and so many moving parts. Is the cause capacity, a stuck message, configuration issues or even worse a misunderstanding of business requirements? Perhaps, the application is running just fine with all indicators green, but the results aren't what the business expected. Or it works fine for users in one group, but not for another. These are very difficult problems to unravel.

An approach Forrester Research suggests is to bring the events from the various sources to a single pain of glass and perform a root-cause analysis. The suggestion is made to use a technology called Complex Event Processing (CEP) to search in real-time for patterns based on events from multiple sources that together describe a problem.

CEP is very good at identifying situations spanning multiple event streams, correlating the individual events together into the "big picture", the situation. Analogous to this is the concept in QA of test cases. Think of situations as the test cases that occur spontaneously in production. APM is not for the faint of heart.

CEP can tie the seemingly unrelated events together into a picture that tells a story, what happened and what triggered it. CEP, using rules is of course dependent on the quality and completeness of those rules. But, that is something that grows ever better over time. A new situation can be described and prevented from ever causing harm again. Without the relationship between the events from the various sources, that would not be possible. We would just be fixing the web server or the database or the application server. With this approach, we are fixing the problem.

CEP represents an actionable form of analytics. You can add CEP analytics to your APM including your currently deployed monitoring solutions as it is inherently a multi-source approach. Utilizing this and delivering root-cause analysis can improve your incident management process. It can help you achieve the IT Ops goals of: getting alerted to problems before the end user is affected and being pointed in the right direction.

Charley Rich is VP Product Management and Marketing at Nastel Technologies.

Hot Topics

The Latest

As businesses increasingly rely on high-performance applications to deliver seamless user experiences, the demand for fast, reliable, and scalable data storage systems has never been greater. Redis — an open-source, in-memory data structure store — has emerged as a popular choice for use cases ranging from caching to real-time analytics. But with great performance comes the need for vigilant monitoring ...

Kubernetes was not initially designed with AI's vast resource variability in mind, and the rapid rise of AI has exposed Kubernetes limitations, particularly when it comes to cost and resource efficiency. Indeed, AI workloads differ from traditional applications in that they require a staggering amount and variety of compute resources, and their consumption is far less consistent than traditional workloads ... Considering the speed of AI innovation, teams cannot afford to be bogged down by these constant infrastructure concerns. A solution is needed ...

AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...