100G is Increasingly Popular, and It's Creating a Host of Management Challenges
November 02, 2020

Nadeem Zahid
cPacket Networks

Share this

Name virtually any technology trend — digital transformation, cloud-first operations, datacenter consolidation, mobility, streaming data, AI/ML, the application explosion, etc. — they all have one thing in common: an insatiable need for higher bandwidth (and often, low latency). The result is a steady push to move 10Gbps and 25Gbps network infrastructure toward the edge, and increasing adoption of 100Gbps in enterprise core, datacenter and service provider networks.

Initial deployments focused on backbone interconnects (historically a dual-ring failover topology; more recently mesh connectivity), primarily driven by north-south traffic. Data center adoption has followed, generally in spine-leaf architecture to handle increases in east-west connections.

Beyond a hunger for bandwidth, 100G is having a moment for several reasons: a commodity-derived drop in cost, increasing availability of 100G-enabled components, and the derivative ability to easily break 100G into 10/25G line rates. In light of these trends, analyst firm Dell'Oro expects 100G adoption to hit its stride this year and remain strong over the next five years.

Nobody in their right mind disputes the notion that enterprises and service providers will continue to adopt ever-faster networks. However, the same thing that makes 100G desirable — speed — conspires to create a host of challenges when trying to manage and monitor the infrastructure. The simple truth is that the faster the network, the more quickly things can go wrong. That makes monitoring for things like regulatory compliance, load balancing, incident response/forensics, capacity planning, etc., more important than ever.

At 10G, every packet is transmitted in 67 nanoseconds; at 100G that increases tenfold, with packets flying by at 6.7 nanoseconds. And therein lies the problem: when it comes to 100G, traditional management and monitoring infrastructure can't keep up.

The line-rate requirement varies based on where infrastructure sits in the monitoring stack. Network TAPs must be capable of mirroring data at 100G line speeds to packet brokers and tools. Packet brokers must handle that 100G traffic simultaneously on multiple ports, and process and forward each packet at line rate to the tool rail. Capture devices need to be able to achieve 100G bursts in capture-to-disk process. And any analysis layer must ingest information at 100G speeds to allow correlation, analysis and visualization.

Complicating matters are various "smart" features, each of which demand additional processing resources. As an example, packet brokers might include filtering, slicing and deduplication capabilities. If the system is already struggling with the line rate, any increased processing load degrades performance further.

For any infrastructure not designed with 100G in mind, the failure mode is inevitably the same: lost or dropped packets. That, in turn, results in network blind spots. When visibility is the goal, blind spots are — at the risk of oversimplification — bad. The impact can be incorrect calculations, slower time-to-resolution or incident response, longer malware dwell time, greater application performance fluctuation, compliance or SLA challenges and more.

Lossless monitoring requires that every part of the visibility stack is designed around 100G line speeds. Packet brokers in particular, given their central role in visibility infrastructure, are a critical chokepoint. Where possible, a two-tier monitoring architecture is recommended with a high-density 10/25/100G aggregation layer to aggregate TAPs and tools, and a high-performance 100G core packet broker to process and service the packets. While upgrades are possible, beware as they add cost yet may still not achieve true 100G line speeds when smart features centralize and share processing requirements at the core. Newer systems with a distributed/dedicated per-port processing architecture (versus shared central processing) are specifically designed to accommodate 100G line rates and eliminate these bottlenecks.

The overarching point is that desire for 100G performance cannot override the need for 100G visibility, or the entire network can suffer as a result. The visibility infrastructure needs to match the forwarding infrastructure. While 100G line rates are certainly possible with the latest monitoring equipment and software, IT teams must not assume that existing network visibility systems can keep up with the new load.

Nadeem Zahid is VP of Product Management & Marketing at cPacket Networks
Share this

The Latest

March 27, 2024

Nearly all (99%) globa IT decision makers, regardless of region or industry, recognize generative AI's (GenAI) transformative potential to influence change within their organizations, according to The Elastic Generative AI Report ...

March 27, 2024

Agent-based approaches to real user monitoring (RUM) simply do not work. If you are pitched to install an "agent" in your mobile or web environments, you should run for the hills ...

March 26, 2024

The world is now all about end-users. This paradigm of focusing on the end-user was simply not true a few years ago, as backend metrics generally revolved around uptime, SLAs, latency, and the like. DevOps teams always pitched and presented the metrics they thought were the most correlated to the end-user experience. But let's be blunt: Unless there was an egregious fire, the correlated metrics were super loose or entirely false ...

March 25, 2024

This year, New Relic published the State of Observability for Financial Services and Insurance Report to share insights derived from the 2023 Observability Forecast on the adoption and business value of observability across the financial services industry (FSI) and insurance sectors. Here are seven key takeaways from the report ...

March 22, 2024

In MEAN TIME TO INSIGHT Episode 4 - Part 2, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at Enterprise Management Associates (EMA) discusses artificial intelligence and AIOps ...

March 21, 2024

In the course of EMA research over the last twelve years, the message for IT organizations looking to pursue a forward path in AIOps adoption is overall a strongly positive one. The benefits achieved are growing in diversity and value ...

March 20, 2024

Today, as enterprises transcend into a new era of work, surpassing the revolution, they must shift their focus and strategies to thrive in this environment. Here are five key areas that organizations should prioritize to strengthen their foundation and steer themselves through the ever-changing digital world ...

March 19, 2024

If there's one thing we should tame in today's data-driven marketing landscape, this would be data debt, a silent menace threatening to undermine all the trust you've put in the data-driven decisions that guide your strategies. This blog aims to explore the true costs of data debt in marketing operations, offering four actionable strategies to mitigate them through enhanced marketing observability ...

March 18, 2024

Gartner has highlighted the top trends that will impact technology providers in 2024: Generative AI (GenAI) is dominating the technical and product agenda of nearly every tech provider ...

March 15, 2024

In MEAN TIME TO INSIGHT Episode 4 - Part 1, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at Enterprise Management Associates (EMA) discusses artificial intelligence and network management ...