Skip to main content

3 Approaches to End-User Experience Monitoring

Sridhar Iyengar

The volume of transactions running through websites and mobile apps make customer-facing applications crucial to online businesses. If these applications perform well for their users, they generate revenue for the business. If they don't, they affect the credibility of the business, which in turn affects the overall revenue. It is therefore imperative that businesses understand how well their revenue-critical applications are behaving for their end users.

From an IT team's point of view, understanding the user experience of their applications is becoming challenging as technology evolves. Newer and more complex applications are being written using an assortment of languages. These applications are being deployed on a wide variety of infrastructure components. To add to that, today's users access these modern applications on a variety of devices such as the Web, smartphones, tablets and smart watches.

Fortunately, there are a few means available through which businesses can determine the user experience of their Web applications. Let's take a look at three common approaches:

Real User Monitoring (RUM)

Real user monitoring is a passive monitoring approach that involves collecting metrics at the browser level to accurately determine the application performance as perceived by the end users. Monitoring at the browser level is achieved by injecting JavaScript snippets into the header and footer of the HTML code of the Web application. This code will ascertain the full-page load experience — including downloading the assets from the content delivery network (CDN), rendering the page and executing the JavaScript from the browser's perspective. Additional instrumentation can be used to collect more metrics by injecting additional JavaScript code.

The data gathered through RUM provides answers to questions about user experience such as:

■ How long did it take to load the full page?

■ What is the response time from a network perspective (redirection time, DNS resolution time, connection time)?

■ What is the time interval between sending the request and receiving the first byte of response?

■ What is the time taken by the browser to receive the response and render the page?

■ Are there any problems on the page? If yes, what caused the problem?

■ How is the performance when the application is accessed from different countries?

■ What is the response time across different browsers? Do new application updates affect the performance in a specific version of the browser?

■ How does the application perform in different platforms such as desktop, Web and mobile?

The biggest advantage of monitoring real user data is that it relies on actual traffic to take measurements. There is no need to script the important use cases, which can save a lot of time and resources.

Real user monitoring captures everything as a user goes through the application, so performance data will be available irrespective of what pages the user sees. This is particularly useful for complex apps in which the functionality or content is dynamic.

Server-Side Monitoring

Although user experience is best tracked at the browser level, application performance monitoring at the server side also provides insight into end-user performance. Server-side monitoring is mostly used in conjunction with real user monitoring. This is because problems originating on the server side can only be efficiently detected using server-side monitoring.

Monitoring performance on the server side involves agent-based instrumentation technology for acquiring and transmitting data. This monitoring approach is used to watch user transactions in real time and troubleshoot in case of issues such as slowness or application bugs.

Developers have to install agents on the application server to help capture and visualize transactions end-to-end, with performance statistics across all components, from the URL down to the SQL level. This visual breakdown reveals the flow of all the user transactions being executed in each layer of the application infrastructure.

Server-side monitoring helps track response time and throughput taken by each application component, with the option to trace transactions end-to-end via code analysis. This helps the IT Operations/DevOps teams identify slow Web transactions and then isolate performance issues down to the level of the specific application code that caused them. The underlying database is also monitored most of the time to determine slow database calls, database usage and overall database performance. With server-side monitoring, users will be able to identify the SQL queries executed during a transaction and thus identify the worst performing queries.

Synthetic Transaction Monitoring

Synthetic transaction monitoring is an active monitoring technique based on the concept of simulating the actions of an end user on a Web application. This method involves the use of external monitoring agents executing pre-recorded scripts that mimic end-user behavior at regular time intervals. The monitoring agents are usually very light and do not create any additional load on network traffic.

Most application performance monitoring solutions provide recorder tools to capture the actions or paths a typical end user might take in an application, such as log in, view product, search and check out. These recordings are saved as scripts, which are then executed by the monitoring agents from different geographical locations.

Technically, there are two different approaches to generating requests. Some solutions replay recorded HTTP traffic patterns, while others drive real browser instances. The second approach is more useful for modern applications that make a lot of JavaScript, CSS and Ajax calls.

Since synthetic transaction monitoring involves sending requests across the network, it can measure the response time of application servers and network infrastructure. This type of monitoring does not require actual Web traffic, so you can use this approach to test your Web applications prior to launch — or anytime you like. Many companies use synthetic monitoring before entering production in the form of automated integration tests with Selenium.

Synthetic monitoring does have its limitations, though. Since the monitoring is based on pre-defined transactions, it does not monitor the perception of real end users. Transactions have to be “read-only” because they would otherwise set off real purchase processes. This limits the usage to a certain subset of your business-critical transactions.

The best approach is to use synthetic transaction monitoring as a reference measurement that will help identify performance degradation, detect network problems and notify in case of errors.

Every business is different and has its own requirements that can help to choose which type of monitoring to implement. An ideal strategy would be to use active and passive monitoring techniques side by side so that no stone is left unturned in the pursuit to monitor end-user experience.

The Latest

E-commerce is set to skyrocket with a 9% rise over the next few years ... To thrive in this competitive environment, retailers must identify digital resilience as their top priority. In a world where savvy shoppers expect 24/7 access to online deals and experiences, any unexpected downtime to digital services can lead to significant financial losses, damage to brand reputation, abandoned carts with designer shoes, and additional issues ...

Efficiency is a highly-desirable objective in business ... We're seeing this scenario play out in enterprises around the world as they continue to struggle with infrastructures and remote work models with an eye toward operational efficiencies. In contrast to that goal, a recent Broadcom survey of global IT and network professionals found widespread adoption of these strategies is making the network more complex and hampering observability, leading to uptime, performance and security issues. Let's look more closely at these challenges ...

Image
Broadcom

The 2025 Catchpoint SRE Report dives into the forces transforming the SRE landscape, exploring both the challenges and opportunities ahead. Let's break down the key findings and what they mean for SRE professionals and the businesses relying on them ...

Image
Catchpoint

The pressure on IT teams has never been greater. As data environments grow increasingly complex, resource shortages are emerging as a major obstacle for IT leaders striving to meet the demands of modern infrastructure management ... According to DataStrike's newly released 2025 Data Infrastructure Survey Report, more than half (54%) of IT leaders cite resource limitations as a top challenge, highlighting a growing trend toward outsourcing as a solution ...

Image
Datastrike

Gartner revealed its top strategic predictions for 2025 and beyond. Gartner's top predictions explore how generative AI (GenAI) is affecting areas where most would assume only humans can have lasting impact ...

The adoption of artificial intelligence (AI) is accelerating across the telecoms industry, with 88% of fixed broadband service providers now investigating or trialing AI automation to enhance their fixed broadband services, according to new research from Incognito Software Systems and Omdia ...

 

AWS is a cloud-based computing platform known for its reliability, scalability, and flexibility. However, as helpful as its comprehensive infrastructure is, disparate elements and numerous siloed components make it difficult for admins to visualize the cloud performance in detail. It requires meticulous monitoring techniques and deep visibility to understand cloud performance and analyze operational efficiency in detail to ensure seamless cloud operations ...

Imagine a future where software, once a complex obstacle, becomes a natural extension of daily workflow — an intuitive, seamless experience that maximizes productivity and efficiency. This future is no longer a distant vision but a reality being crafted by the transformative power of Artificial Intelligence ...

Enterprise data sprawl already challenges companies' ability to protect and back up their data. Much of this information is never fully secured, leaving organizations vulnerable. Now, as GenAI platforms emerge as yet another environment where enterprise data is consumed, transformed, and created, this fragmentation is set to intensify ...

Image
Crashplan

OpenTelemetry (OTel) has revolutionized the way we approach observability by standardizing the collection of telemetry data ... Here are five myths — and truths — to help elevate your OTel integration by harnessing the untapped power of logs ...

3 Approaches to End-User Experience Monitoring

Sridhar Iyengar

The volume of transactions running through websites and mobile apps make customer-facing applications crucial to online businesses. If these applications perform well for their users, they generate revenue for the business. If they don't, they affect the credibility of the business, which in turn affects the overall revenue. It is therefore imperative that businesses understand how well their revenue-critical applications are behaving for their end users.

From an IT team's point of view, understanding the user experience of their applications is becoming challenging as technology evolves. Newer and more complex applications are being written using an assortment of languages. These applications are being deployed on a wide variety of infrastructure components. To add to that, today's users access these modern applications on a variety of devices such as the Web, smartphones, tablets and smart watches.

Fortunately, there are a few means available through which businesses can determine the user experience of their Web applications. Let's take a look at three common approaches:

Real User Monitoring (RUM)

Real user monitoring is a passive monitoring approach that involves collecting metrics at the browser level to accurately determine the application performance as perceived by the end users. Monitoring at the browser level is achieved by injecting JavaScript snippets into the header and footer of the HTML code of the Web application. This code will ascertain the full-page load experience — including downloading the assets from the content delivery network (CDN), rendering the page and executing the JavaScript from the browser's perspective. Additional instrumentation can be used to collect more metrics by injecting additional JavaScript code.

The data gathered through RUM provides answers to questions about user experience such as:

■ How long did it take to load the full page?

■ What is the response time from a network perspective (redirection time, DNS resolution time, connection time)?

■ What is the time interval between sending the request and receiving the first byte of response?

■ What is the time taken by the browser to receive the response and render the page?

■ Are there any problems on the page? If yes, what caused the problem?

■ How is the performance when the application is accessed from different countries?

■ What is the response time across different browsers? Do new application updates affect the performance in a specific version of the browser?

■ How does the application perform in different platforms such as desktop, Web and mobile?

The biggest advantage of monitoring real user data is that it relies on actual traffic to take measurements. There is no need to script the important use cases, which can save a lot of time and resources.

Real user monitoring captures everything as a user goes through the application, so performance data will be available irrespective of what pages the user sees. This is particularly useful for complex apps in which the functionality or content is dynamic.

Server-Side Monitoring

Although user experience is best tracked at the browser level, application performance monitoring at the server side also provides insight into end-user performance. Server-side monitoring is mostly used in conjunction with real user monitoring. This is because problems originating on the server side can only be efficiently detected using server-side monitoring.

Monitoring performance on the server side involves agent-based instrumentation technology for acquiring and transmitting data. This monitoring approach is used to watch user transactions in real time and troubleshoot in case of issues such as slowness or application bugs.

Developers have to install agents on the application server to help capture and visualize transactions end-to-end, with performance statistics across all components, from the URL down to the SQL level. This visual breakdown reveals the flow of all the user transactions being executed in each layer of the application infrastructure.

Server-side monitoring helps track response time and throughput taken by each application component, with the option to trace transactions end-to-end via code analysis. This helps the IT Operations/DevOps teams identify slow Web transactions and then isolate performance issues down to the level of the specific application code that caused them. The underlying database is also monitored most of the time to determine slow database calls, database usage and overall database performance. With server-side monitoring, users will be able to identify the SQL queries executed during a transaction and thus identify the worst performing queries.

Synthetic Transaction Monitoring

Synthetic transaction monitoring is an active monitoring technique based on the concept of simulating the actions of an end user on a Web application. This method involves the use of external monitoring agents executing pre-recorded scripts that mimic end-user behavior at regular time intervals. The monitoring agents are usually very light and do not create any additional load on network traffic.

Most application performance monitoring solutions provide recorder tools to capture the actions or paths a typical end user might take in an application, such as log in, view product, search and check out. These recordings are saved as scripts, which are then executed by the monitoring agents from different geographical locations.

Technically, there are two different approaches to generating requests. Some solutions replay recorded HTTP traffic patterns, while others drive real browser instances. The second approach is more useful for modern applications that make a lot of JavaScript, CSS and Ajax calls.

Since synthetic transaction monitoring involves sending requests across the network, it can measure the response time of application servers and network infrastructure. This type of monitoring does not require actual Web traffic, so you can use this approach to test your Web applications prior to launch — or anytime you like. Many companies use synthetic monitoring before entering production in the form of automated integration tests with Selenium.

Synthetic monitoring does have its limitations, though. Since the monitoring is based on pre-defined transactions, it does not monitor the perception of real end users. Transactions have to be “read-only” because they would otherwise set off real purchase processes. This limits the usage to a certain subset of your business-critical transactions.

The best approach is to use synthetic transaction monitoring as a reference measurement that will help identify performance degradation, detect network problems and notify in case of errors.

Every business is different and has its own requirements that can help to choose which type of monitoring to implement. An ideal strategy would be to use active and passive monitoring techniques side by side so that no stone is left unturned in the pursuit to monitor end-user experience.

The Latest

E-commerce is set to skyrocket with a 9% rise over the next few years ... To thrive in this competitive environment, retailers must identify digital resilience as their top priority. In a world where savvy shoppers expect 24/7 access to online deals and experiences, any unexpected downtime to digital services can lead to significant financial losses, damage to brand reputation, abandoned carts with designer shoes, and additional issues ...

Efficiency is a highly-desirable objective in business ... We're seeing this scenario play out in enterprises around the world as they continue to struggle with infrastructures and remote work models with an eye toward operational efficiencies. In contrast to that goal, a recent Broadcom survey of global IT and network professionals found widespread adoption of these strategies is making the network more complex and hampering observability, leading to uptime, performance and security issues. Let's look more closely at these challenges ...

Image
Broadcom

The 2025 Catchpoint SRE Report dives into the forces transforming the SRE landscape, exploring both the challenges and opportunities ahead. Let's break down the key findings and what they mean for SRE professionals and the businesses relying on them ...

Image
Catchpoint

The pressure on IT teams has never been greater. As data environments grow increasingly complex, resource shortages are emerging as a major obstacle for IT leaders striving to meet the demands of modern infrastructure management ... According to DataStrike's newly released 2025 Data Infrastructure Survey Report, more than half (54%) of IT leaders cite resource limitations as a top challenge, highlighting a growing trend toward outsourcing as a solution ...

Image
Datastrike

Gartner revealed its top strategic predictions for 2025 and beyond. Gartner's top predictions explore how generative AI (GenAI) is affecting areas where most would assume only humans can have lasting impact ...

The adoption of artificial intelligence (AI) is accelerating across the telecoms industry, with 88% of fixed broadband service providers now investigating or trialing AI automation to enhance their fixed broadband services, according to new research from Incognito Software Systems and Omdia ...

 

AWS is a cloud-based computing platform known for its reliability, scalability, and flexibility. However, as helpful as its comprehensive infrastructure is, disparate elements and numerous siloed components make it difficult for admins to visualize the cloud performance in detail. It requires meticulous monitoring techniques and deep visibility to understand cloud performance and analyze operational efficiency in detail to ensure seamless cloud operations ...

Imagine a future where software, once a complex obstacle, becomes a natural extension of daily workflow — an intuitive, seamless experience that maximizes productivity and efficiency. This future is no longer a distant vision but a reality being crafted by the transformative power of Artificial Intelligence ...

Enterprise data sprawl already challenges companies' ability to protect and back up their data. Much of this information is never fully secured, leaving organizations vulnerable. Now, as GenAI platforms emerge as yet another environment where enterprise data is consumed, transformed, and created, this fragmentation is set to intensify ...

Image
Crashplan

OpenTelemetry (OTel) has revolutionized the way we approach observability by standardizing the collection of telemetry data ... Here are five myths — and truths — to help elevate your OTel integration by harnessing the untapped power of logs ...