6 Ways Generative AI Will Impact Data Management
May 07, 2024

Vasu Sattenapalli

Share this

As businesses focus more and more on uncovering new ways to unlock the value of their data, generative AI (GenAI) is presenting some new opportunities to do so, particularly when it comes to data management and how organizations collect, process, analyze, and derive insights from their assets. In the near future, I expect to see six key ways in which GenAI will reshape our current data management landscape, ranging from enhancing baseline data accuracy to enabling the more widespread use of natural language processing, helping to democratize data use for all.

1. Enhancing Data Accuracy and Reliability for Better Overall Quality

First, one of the primary benefits of GenAI is that it can help organizations train models, due to its ability to generate synthetic data that closely resembles real-world datasets. By referencing synthetic datasets full of large volumes of high-quality data, these models can now be trained to more successfully capture underlying patterns and characteristics when analyzing actual data. Beyond just training, these generated datasets can also be used for numerous other purposes, such as stress-testing data pipelines.

Similarly, we'll see these same capabilities employed to improve anomaly detection techniques, in turn leading to better overall data quality. Traditional anomaly detection requires using set rules or statistical thresholds to identify outliers in data, whereas GenAI models can learn from underlying patterns and data distributions to detect those anomalies that may not conform to predefined norms. More thorough anomaly detection like this will enable organizations to more accurately pinpoint any data inconsistencies, errors, or outliers, thereby enhancing the reliability of the entire dataset, as well as their other assets.

2. Enabling Widespread Use of Natural Language Queries in Data Analytics

GenAI will also prove useful for analytics by introducing query assistance techniques that can guide users of varying skill levels through the process of formulating queries. Users will be able to submit query requests in plain English, while GenAI models work to analyze the input and intent behind it. That analysis will lead the model to suggest relevant query formulations or provide real-time feedback to users as they refine their queries.

From the user's perspective, this not only simplifies the query-writing process, but it also means that those of any technical skill level will find it easier to interact with data — and quickly grasp the most important aspects of their analysis. And from the organization's perspective, this means that more users will feel comfortable with and find more value from regular data use, leading to better business decision making across the board.

3. Bridging the Skills Gap in Data Engineering Through NLP

We can also expect to see these natural language processing (NLP) capabilities put to use to facilitate communication between technical and non-technical stakeholders — especially in regards to data integration. Integrating data from multiple disparate sources has historically been an intricate process that requires technical expertise in data formats, schemas, and integration protocols. But with NLP, much like the above, non-technical users will be able to express their data integration requirements in plain English. For instance, business analysts or domain experts can submit queries like "combine sales data from CRM with inventory data from ERP," allowing data engineers to efficiently interpret and execute these requests.

In the data transformation phase, we'll see NLP streamline the often-complex coding and scripts tasks during data manipulation and conversion. With NLP-driven data transformation frameworks, data engineers can interpret transformation rules in natural language and automatically translate them into code, accelerating the development of data transformation pipelines.

4. Aiding in the Enrichment of Data Catalogs

Lackluster or incomplete metadata in data catalogs can be easily addressed through the addition of GenAI. After analyzing the content, structure, and context of datasets, GenAI models can populate metadata fields like data types, column names, relationships, and semantic meanings, helping business users to discover relevant datasets faster than they could before. The models can also generate natural language descriptions or summaries for those datasets, so users can understand the content and context of the data they've searched for. Beyond this, because of GenAI's ability to create synthetic datasets, organizations can also use these synthetic data samples to train their search and recommendation algorithms, yielding better search results for users.

5. Streamlining Information Governance for Metadata

Much like the analysis and enrichment of metadata for data catalogs, businesses can identify key features, patterns, and characteristics in datasets, and then assign tags or labels to accelerate metadata management. We can expect to see much faster and more accurate organization and categorization of data assets, with GenAI populating more descriptive metadata attributes. Those attributes will also feed into GenAI models' understanding of relationships between different types of metadata, drawing out new connections, dependencies, and associations between attributes. Together, these capabilities will support companies looking to build more comprehensive and interconnected metadata schemas, in turn allowing their business users to navigate and explore metadata more intuitively.

6. Redefining Documentation Processes

And finally, we'll again see those natural language abilities deployed for documentation purposes. Rather than labor-intensive manual creation of complex documents, language models can be trained on textual data to understand key concepts and produce text that explains it accurately. As a result, organizations can automate documentation tasks such as writing technical reports, user manuals, and system documentation, which can achieve both a greater number of documents produced and more consistency across a suite of documents. These documentation efforts can also easily scale over time to keep pace with the rapid evolution of technology while still adhering to their documentation standards.

With GenAI's ability to automate tasks and streamline processes, it will prove incredibly useful for businesses looking to improve their data management procedures — in the short term and the long term. Add in its natural language processing and generation capabilities, and it will yield the added benefit of democratizing data access for technical and non-technical users alike. For organizations looking to embrace GenAI technologies, using it in these six key ways will help to unlock the greatest opportunities for efficiency and collaboration in data management.

Vasu Sattenapalli is CEO and Co-Founder at RightData
Share this

The Latest

May 23, 2024

Hybrid cloud architecture is breaking the backs of network engineering and operations teams. These teams are more successful when their companies go all-in with the cloud or stay out of it entirely. When companies maintain hybrid infrastructure, with applications and data residing across data centers and public cloud services, the network team struggles. This insight emerged in the newly published 2024 edition of Enterprise Management Associates' (EMA) Network Management Megatrends research ...

May 22, 2024

As IT practitioners, we often find ourselves fighting fires rather than proactively getting ahead ... Many spend countless hours managing several tools that give them different, fractured views of their own work — which isn't an effective use of time. Balancing daily technical tasks with long-term company goals requires a three-step approach. I'll share these steps and tips for others to do the same ...

May 21, 2024

IT service outages are more than a minor inconvenience. They can cost businesses millions while simultaneously leading to customer dissatisfaction and reputational damage. Moreover, the constant pressure of dealing with fire drills and escalations day and night can take a heavy toll on ITOps teams, leading to increased stress, human error, and burnout ...

May 20, 2024

Amid economic disruption, fintech competition, and other headwinds in recent years, banks have had to quickly adjust to the demands of the market. This adaptation is often reliant on having the right technology infrastructure in place ...

May 17, 2024

In MEAN TIME TO INSIGHT Episode 6, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses network automation ...

May 16, 2024

In the ever-evolving landscape of software development and infrastructure management, observability stands as a crucial pillar. Among its fundamental components lies log collection ... However, traditional methods of log collection have faced challenges, especially in high-volume and dynamic environments. Enter eBPF, a groundbreaking technology ...

May 15, 2024

Businesses are dazzled by the promise of generative AI, as it touts the capability to increase productivity and efficiency, cut costs, and provide competitive advantages. With more and more generative AI options available today, businesses are now investigating how to convert the AI promise into profit. One way businesses are looking to do this is by using AI to improve personalized customer engagement ...

May 14, 2024

In the fast-evolving realm of cloud computing, where innovation collides with fiscal responsibility, the Flexera 2024 State of the Cloud Report illuminates the challenges and triumphs shaping the digital landscape ... At the forefront of this year's findings is the resounding chorus of organizations grappling with cloud costs ...

May 13, 2024

Government agencies are transforming to improve the digital experience for employees and citizens, allowing them to achieve key goals, including unleashing staff productivity, recruiting and retaining talent in the public sector, and delivering on the mission, according to the Global Digital Employee Experience (DEX) Survey from Riverbed ...

May 09, 2024

App sprawl has been a concern for technologists for some time, but it has never presented such a challenge as now. As organizations move to implement generative AI into their applications, it's only going to become more complex ... Observability is a necessary component for understanding the vast amounts of complex data within AI-infused applications, and it must be the centerpiece of an app- and data-centric strategy to truly manage app sprawl ...