AIOps and the Modern Enterprise
Modern times, modern demands
November 14, 2018

Bhanu Singh
OpsRamp

Share this

Thanks to digital transformation, enterprise application and IT infrastructure stacks have witnessed a dramatic shift. Enterprises have transitioned from monolithic applications, bare metal infrastructure and virtual workloads to agile microservices, public cloud platforms and containerized deployments. To keep pace with dynamic and distributed digital services, enterprise IT teams have turned to monitoring point tools to solve specific pain points.


With a majority of enterprises investing in ten or more monitoring tools, it is no easy task keeping up with the volume, variety, and velocity of events for hybrid IT environments. Analyst firm EMA has estimated that IT admins can waste more than half their day digging through irrelevant or redundant alerts. How can IT teams focus on the critical events that can impact their business instead of wading through false positives? The emerging discipline of AIOps is a much-needed panacea for detecting patterns, identifying anomalies, and making sense of alerts across hybrid infrastructure.

What is AIOps?

AIOps leverages a broad set of technology approaches, including machine learning, network science, combinatorial optimization and other computational approaches for solving everyday IT operational problems at scale. Enterprises can address a wide variety of IT management activities with AIOps, such as intelligent alerting, alert correlation, alert escalation, auto-remediation, root cause(s) analysis and capacity optimization.

How are digital operations teams taking advantage of this new application of machine learning and artificial intelligence? OpsRamp, recently released its Top Trends In AIOps Adoptionreport. We surveyed 120 IT executives at enterprises with 500+ employees to better understand their operational challenges and see how they’re using AIOps tools.

Here are four insights from the report that offer an inside look into how enterprises are using issue identification, pattern discovery, and predictive analytics to improve IT-service performance:

1. AIOps Is No Longer A Science Project

AIOps adoption is gaining momentum, with enterprises either experimenting or actively using machine learning and data science for hybrid infrastructure management. 68% of IT decision-makers are piloting AIOps to better manage the availability and performance of business-critical IT services.

The bottom line? The use cases of advanced analytics and automation for IT management are just gaining traction. Gartner projects an increase of 40% in AIOps adoption by 2022. It’s not going away any time soon.

2. Data Insights and Root Cause Analysis Drive AIOps Usage

Modern IT services combine legacy datacenter and multi-cloud environments with numerous commercial and open-source monitoring products for tracking service health and performance. AIOps tools are ingesting, storing and analyzing monitoring data and delivering intelligent insights to fix IT service visibility issues.

Nearly three-quarters of these IT teams are using AIOps capabilities to gain more meaningful insights (73%) from system generated and monitoring-related alerts. Two-thirds of respondents are also applying AIOps to cut through the noise and determine the root cause (68%) of performance issues.

The bottom line? Across the board, respondents resoundingly agreed: AIOps is a chief solution in the battle against data smog. In fact, using AIOps to extract the signal from the noise is one of the primary use cases.

3. AIOps Provides Much-Needed Relief

The two big benefits of AIOps are the ability to automate routine functions (74%) and avoid costly service disruptions with faster recovery (67%). AIOps can also drive better anomaly detection (58%), by predicting shifts in system behavior across dynamic production environments.

The bottom line? I believe that as AIOps tools grow in sophistication, IT teams can expect to save time and money with actionable event context and data-driven recommendations. AIOps will let them focus on high-visibility projects instead of mundane operational tasks.

4. Data Quality and Talent Crunch Top Concerns For AIOps Adoption

While AIOps adoption is gaining steam, we found that there are a few apprehensions which could prevent wider adoption. The accuracy of prediction models (54%), quality of large datasets (52%) for machine learning models and the IT talent (48%) needed for building machine learning algorithms are all key constraints for scaling AIOps.

The bottom line? Accuracy, data quality, and transparency are the biggest AIOps roadblocks. IT leaders will need to identify emerging AIOps challenges and partner with technology vendors to prioritize the right solutions.

A Future, Unsupervised

AIOps is gaining traction in the modern enterprise, and it’s easy to see why. In 2018, the only effective way to tame alert storms is to combine human intuition with machine intelligence. IDC’s Worldwide CIO Agenda 2019 Predictions shows that 70% of CIOs will leverage artificial intelligence and machine learning for IT operations to increase staff productivity, drive faster incident response and minimize downtime. Our research corroborates these findings. The future will almost assuredly include a degree of self-healing IT operations management. That degree is still uncertain. But the age of AIOps is definitely upon us.

Bhanu Singh is SVP of Product Management and Engineering at OpsRamp
Share this

The Latest

July 28, 2021

Business leaders are in the unique position of having immediate access to huge amounts of data in today's smartphone and laptop-dominated world. They are also under pressure to make data-driven decisions and mobile business intelligence can one of the most valuable decision making tools in their arsenal ...

July 27, 2021

Unlike some AI initiatives, AIOps doesn't always necessitate the use of a data scientist, so don't let hiring expenses put your AIOps initiatives on hold. It is always nice to have IT team members with AI skills, but this becomes less critical as more intelligent solutions come into prominence that offer AIOps features out of the box, a readily deployable option for IT ...

July 26, 2021

AIOps is rapidly becoming a de-facto option for enterprises' IT strategies, with nearly immeasurable benefits to be provided. However, AIOps is still a relatively new discipline and misconceptions surrounding the technology's capabilities and uses have caused bottlenecks and roadblocks in its widespread adoption. So, what should organizations expect from AIOps? How can organizations that want to digitally transform their IT pursue AIOps for maximum benefit? ...

July 22, 2021

In response to the global pandemic, companies have given their workforce the tools they need to work remote. And research shows it has increased their engagement and productivity. But these gains are on the brink of being wiped out. According to a new study from Citrix Systems, Inc., employees feel they've been given too many tools and not enough efficient ways to execute. And it's hindering their ability to get things done ...

July 21, 2021

The third installment of Aptum's four-part Cloud Impact Study, A Bright Forecast on Cloud, presents data showing the benefits organizations gain from cloud computing, as well as mistakes to avoid during migration. As organizations migrate workloads to different cloud platforms, they often run into unexpected challenges due to a lack of proactive planning. Here are a few key findings from Part 3 of the Cloud Impact Study ...

July 20, 2021

Currently, (and most likely well into the future) the overwhelming majority of organizations still need to monitor and maintain enterprise applications. Moreover, where these are complex systems developed, debugged and refined over years, often decades, around a business's core processes, there can also be very strong practical arguments for viewing them as classics. They can offer a valuable legacy, one best left where it is, doing what it does, how it always has done ...

July 19, 2021

Anti-patterns involve realizing a problem and implementing a non-optimal solution that is broadly embraced as the go-to method for solving that problem. This solution sounds good in theory, but for one reason or another it is not the best means of solving the problem. Anti-patterns are common across IT as well, especially around application monitoring and observability. One that is particularly prevalent is in response to the increasing complexity of cloud-native infrastructure and applications ...

July 15, 2021

The introduction of the latest technology — such as AI and machine learning — can be seen as a way for organizations to accelerate growth, increase efficiency, and improve customer service. However, the truth is that the technology alone will do little to deliver on these business outcomes. AI for IT operations (AIOps) is one area where the application of technology, if not matched with organizational maturity readiness, will fail to deliver all the promised benefits ...

July 14, 2021

SREs that fail to deliver customer value run the risk of being stuck in an operational toil rut. Conversely, businesses failing to recognize the bi-modal nature and importance of SRE activities run the risk of losing talented employees and their competitive edge ...

July 13, 2021

As part of digital transformation initiatives, IT teams are quickly adopting AIOps solutions to accommodate a new multifaceted infrastructure. However, there are still several roadblocks IT leaders must overcome when adopting AIOps — namely, understanding how to showcase ROI and changing their team's cultural mindset around adopting a new strategy ...