AIOps and the Modern Enterprise
Modern times, modern demands
November 14, 2018

Bhanu Singh
OpsRamp

Share this

Thanks to digital transformation, enterprise application and IT infrastructure stacks have witnessed a dramatic shift. Enterprises have transitioned from monolithic applications, bare metal infrastructure and virtual workloads to agile microservices, public cloud platforms and containerized deployments. To keep pace with dynamic and distributed digital services, enterprise IT teams have turned to monitoring point tools to solve specific pain points.


With a majority of enterprises investing in ten or more monitoring tools, it is no easy task keeping up with the volume, variety, and velocity of events for hybrid IT environments. Analyst firm EMA has estimated that IT admins can waste more than half their day digging through irrelevant or redundant alerts. How can IT teams focus on the critical events that can impact their business instead of wading through false positives? The emerging discipline of AIOps is a much-needed panacea for detecting patterns, identifying anomalies, and making sense of alerts across hybrid infrastructure.

What is AIOps?

AIOps leverages a broad set of technology approaches, including machine learning, network science, combinatorial optimization and other computational approaches for solving everyday IT operational problems at scale. Enterprises can address a wide variety of IT management activities with AIOps, such as intelligent alerting, alert correlation, alert escalation, auto-remediation, root cause(s) analysis and capacity optimization.

How are digital operations teams taking advantage of this new application of machine learning and artificial intelligence? OpsRamp, recently released its Top Trends In AIOps Adoptionreport. We surveyed 120 IT executives at enterprises with 500+ employees to better understand their operational challenges and see how they’re using AIOps tools.

Here are four insights from the report that offer an inside look into how enterprises are using issue identification, pattern discovery, and predictive analytics to improve IT-service performance:

1. AIOps Is No Longer A Science Project

AIOps adoption is gaining momentum, with enterprises either experimenting or actively using machine learning and data science for hybrid infrastructure management. 68% of IT decision-makers are piloting AIOps to better manage the availability and performance of business-critical IT services.

The bottom line? The use cases of advanced analytics and automation for IT management are just gaining traction. Gartner projects an increase of 40% in AIOps adoption by 2022. It’s not going away any time soon.

2. Data Insights and Root Cause Analysis Drive AIOps Usage

Modern IT services combine legacy datacenter and multi-cloud environments with numerous commercial and open-source monitoring products for tracking service health and performance. AIOps tools are ingesting, storing and analyzing monitoring data and delivering intelligent insights to fix IT service visibility issues.

Nearly three-quarters of these IT teams are using AIOps capabilities to gain more meaningful insights (73%) from system generated and monitoring-related alerts. Two-thirds of respondents are also applying AIOps to cut through the noise and determine the root cause (68%) of performance issues.

The bottom line? Across the board, respondents resoundingly agreed: AIOps is a chief solution in the battle against data smog. In fact, using AIOps to extract the signal from the noise is one of the primary use cases.

3. AIOps Provides Much-Needed Relief

The two big benefits of AIOps are the ability to automate routine functions (74%) and avoid costly service disruptions with faster recovery (67%). AIOps can also drive better anomaly detection (58%), by predicting shifts in system behavior across dynamic production environments.

The bottom line? I believe that as AIOps tools grow in sophistication, IT teams can expect to save time and money with actionable event context and data-driven recommendations. AIOps will let them focus on high-visibility projects instead of mundane operational tasks.

4. Data Quality and Talent Crunch Top Concerns For AIOps Adoption

While AIOps adoption is gaining steam, we found that there are a few apprehensions which could prevent wider adoption. The accuracy of prediction models (54%), quality of large datasets (52%) for machine learning models and the IT talent (48%) needed for building machine learning algorithms are all key constraints for scaling AIOps.

The bottom line? Accuracy, data quality, and transparency are the biggest AIOps roadblocks. IT leaders will need to identify emerging AIOps challenges and partner with technology vendors to prioritize the right solutions.

A Future, Unsupervised

AIOps is gaining traction in the modern enterprise, and it’s easy to see why. In 2018, the only effective way to tame alert storms is to combine human intuition with machine intelligence. IDC’s Worldwide CIO Agenda 2019 Predictions shows that 70% of CIOs will leverage artificial intelligence and machine learning for IT operations to increase staff productivity, drive faster incident response and minimize downtime. Our research corroborates these findings. The future will almost assuredly include a degree of self-healing IT operations management. That degree is still uncertain. But the age of AIOps is definitely upon us.

Bhanu Singh is VP of Product Development and Cloud Operations at OpsRamp
Share this

The Latest

April 18, 2019

A vast majority of organizations are still unprepared to properly respond to cybersecurity incidents, with 77% of respondents indicating they do not have a cybersecurity incident response plan applied consistently across the enterprise, according to The 2019 Study on the Cyber Resilient Organization, a study conducted by the Ponemon Institute on behalf of IBM ...

April 17, 2019

People and businesses today make mistakes similar to Troy, when they get too enamored by the latest, flashiest technology. These modern Trojan Horses work through their ability to "wow" us. Cybercriminals find IoT devices an easy target because they are the cool new technology on the block ...

April 16, 2019

Software security flaws cause the majority of product vulnerabilities, according to the 2019 Security Report from Ixia's Application and Threat Intelligence (ATI) Research Center ...

April 15, 2019

The majority of organizations (nearly 70 percent) do not prioritize the protection of the applications that their business depend on — such as ERP and CRM systems — any differently than how low-value data, applications or services are secured, according to a new survey from CyberArk ...

April 12, 2019

While 97 percent of organizations are currently undertaking or planning to undertake digital transformation initiatives, integration challenges are hindering efforts for 84 percent of organizations, according to the 2019 Connectivity Benchmark Report from MuleSoft ...

April 11, 2019

Companies have low visibility into their public cloud environments, and the tools and data supplied by cloud providers are insufficient, according to The State of Public Cloud Monitoring, a report sponsored by Ixia ...

April 10, 2019

Without improvement in time and budget constraints, the majority of tech pros (75 percent) say they will be unable to confidently manage future innovations, according to IT Trends Report 2019: Skills for Tech Pros of Tomorrow, a new report from SolarWinds. This reality ultimately puts businesses at risk of performance and competitive advantage losses, making the prioritization of skills and career development for tech pros paramount ...

April 09, 2019

Tech pros have one foot grounded in today's hybrid IT realities while also setting their sights on emerging technology, according to IT Trends Report 2019: Skills for Tech Pros of Tomorrow ...

April 08, 2019

This Thursday EMA will be presenting a webinar — Automation, AI and Analytics: Reinventing ITSM — covering recent research. There were quite a few surprises. And in fact, many of the surprises indicated a yet-more-positive outlook than we expected ...

April 05, 2019

Almost three-fourths (69 percent) of organizations have plans to deploy 5G by 2020, according to a new 5G use case and adoption survey by Gartner. Organizations expect 5G networks to be mainly used for IoT communications and video, with operational efficiency being the key driver ...