Skip to main content

Data Convergence is Critical to Achieving Maximum Availability

Phil Tee

Countless organizations have adopted modern technologies, from intelligent automation to AI and ML, to increase operational efficiency in the past several years. Indeed many of these approaches have been met with great success. However, as any site reliability engineer (SRE) or DevOps team member knows, forward-thinking changes to IT infrastructure have unintended side effects. As tech stacks expand, platform technologies improve and data becomes more ephemeral, a tenuous relationship with system uptime evolves. Welcome to the availability crunch.

To achieve maximum availability, IT leaders must employ domain-agnostic solutions that identify and escalate issues across all telemetry points. These technologies, which we refer to as Artificial Intelligence for IT Operations, create convergence — in other words, they provide IT and DevOps teams with the full picture of event management and downtime. Instead of handling a myriad of events and state-changes, AIOps tools provide teams with the context for those changes. And with that context, they are empowered to quickly and efficiently resolve issues, maintaining higher availability in the process.

Here is why convergence is critical for all organizations.

Exploring the Close Relationship Between Availability and Convergence

Most IT leaders acknowledge the importance of availability. Case in point: according to Moogsoft’s State of Availability report, engineering teams spend more time on monitoring than any other task (more even than vital responsibilities like automation, cloud adoption and testing/QA). Leaders often understand monitoring as a powerful method to prevent downtime because it allows human technicians to catch errors before they become dangerous. Ostensibly, at least.

Yet 45% of issues are reported by customers, not tools, and one-fourth of teams breach their service level objectives (SLOs) due to extended system downtime. This statistic suggests that monitoring is no longer enough to maintain availability.

But what do these issues have to do with convergence? Many organizations face extended outages at least partly because their data architecture is highly fragmented and complex. Instead of relying on a single domain-agnostic tool to synthesize the nature of data errors, these organizations likely rely on point solutions that only provide part of the necessary context. As a result, their system infrastructure is siloed, and system-breaking issues obscurely take root. Organizations with these issues have yet to achieve convergence.

In fact, most organizations have yet to reach full data convergence. Thanks to the complex nature of modern data, most enterprises inevitably juggle disparate data types gathered from various tools. This complicates the process of data analysis and extrapolation — and as a result, jeopardizes uptime. And yet availability is a key requirement for establishing success. Enterprises with low availability often lose revenue and prevent their consumers/constituents from accessing vital offerings, from goods and services to transportation and healthcare.

How to Prioritize Convergence in Your Organization

In a perfect world, all data would be of the same type, and contextuality would be far less complicated. But as our modern business environment primarily exists in the digital world, it is only natural that supporting system uptime requires a more advanced helping hand.

According to Moogsoft research, the average engineering team deals with a staggering 16 monitoring tools. That equates to an avalanche of complex data capable of tanking a system under the right circumstances. Leaders should prioritize establishing a 360-degree view of their organization’s cloud applications to keep up with these varied data sources. Management tools — especially AIOps — are helpful here because they integrate with large tech stacks and ingest data to create a simulacrum of convergence. In other words, even data from varied sources on different servers can be processed as one.

Here are a few factors leaders should consider when deciding which tool to interpolate into their organization’s tech stack.

Domain agnosticism

Leaders seeking a comprehensive application deployment and management solution should consider the benefits of a domain-agnostic approach to AIOps. Domain agnosticism in AIOps provides a generalized approach to application performance management. Instead of localized control of two or three isolated tools, domain-agnostic AIOps protects system-wide operations, collating data from various sources. This is critical for achieving convergence.

Data analysis > data collection

Monitoring tools are helpful but only go so far. If IT leaders feel their department is wasting time collecting data — or neglecting to enact impactful system-wide changes thanks to said data — they should adopt a data analysis tool, not a data synthesis tool. The difference? Monitoring tools provide information, while data analysis tools provide solutions.

High-quality AI and ML

Management tools that rely on AI and machine learning (ML) provide peace of mind because they quickly adapt to emerging threat patterns and organizational infrastructure. That means administrators do not have to worry about manual algorithm entry. They do not have to trust flawed logic patterns, either — instead of falling back onto pre-programmed, if this, then that patterns of threat detection, AI-based management tools learn and grow alongside an organization’s system and IT environment.

IT leaders who carefully consider leading AIOps solutions will find that convergence can be achieved, but only when all events and incidents are processed and contextualized. Piecemeal solutions jeopardize an IT or DevOps team’s ability to process errors in a timely way, which in turn leads to more downtime. Prioritizing the right toolkit should be an IT leader’s top priority going into the new year. And given the importance of availability in our highly digital world, it is crucial IT leaders start adopting that toolkit today.

Hot Topics

The Latest

For many B2B and B2C enterprise brands, technology isn't a core strength. Relying on overly complex architectures (like those that follow a pure MACH doctrine) has been flagged by industry leaders as a source of operational slowdown, creating bottlenecks that limit agility in volatile market conditions ...

FinOps champions crucial cross-departmental collaboration, uniting business, finance, technology and engineering leaders to demystify cloud expenses. Yet, too often, critical cost issues are softened into mere "recommendations" or "insights" — easy to ignore. But what if we adopted security's battle-tested strategy and reframed these as the urgent risks they truly are, demanding immediate action? ...

Two in three IT professionals now cite growing complexity as their top challenge — an urgent signal that the modernization curve may be getting too steep, according to the Rising to the Challenge survey from Checkmk ...

While IT leaders are becoming more comfortable and adept at balancing workloads across on-premises, colocation data centers and the public cloud, there's a key component missing: connectivity, according to the 2025 State of the Data Center Report from CoreSite ...

A perfect storm is brewing in cybersecurity — certificate lifespans shrinking to just 47 days while quantum computing threatens today's encryption. Organizations must embrace ephemeral trust and crypto-agility to survive this dual challenge ...

In MEAN TIME TO INSIGHT Episode 14, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud network observability... 

While companies adopt AI at a record pace, they also face the challenge of finding a smart and scalable way to manage its rapidly growing costs. This requires balancing the massive possibilities inherent in AI with the need to control cloud costs, aim for long-term profitability and optimize spending ...

Telecommunications is expanding at an unprecedented pace ... But progress brings complexity. As WanAware's 2025 Telecom Observability Benchmark Report reveals, many operators are discovering that modernization requires more than physical build outs and CapEx — it also demands the tools and insights to manage, secure, and optimize this fast-growing infrastructure in real time ...

As businesses increasingly rely on high-performance applications to deliver seamless user experiences, the demand for fast, reliable, and scalable data storage systems has never been greater. Redis — an open-source, in-memory data structure store — has emerged as a popular choice for use cases ranging from caching to real-time analytics. But with great performance comes the need for vigilant monitoring ...

Kubernetes was not initially designed with AI's vast resource variability in mind, and the rapid rise of AI has exposed Kubernetes limitations, particularly when it comes to cost and resource efficiency. Indeed, AI workloads differ from traditional applications in that they require a staggering amount and variety of compute resources, and their consumption is far less consistent than traditional workloads ... Considering the speed of AI innovation, teams cannot afford to be bogged down by these constant infrastructure concerns. A solution is needed ...

Data Convergence is Critical to Achieving Maximum Availability

Phil Tee

Countless organizations have adopted modern technologies, from intelligent automation to AI and ML, to increase operational efficiency in the past several years. Indeed many of these approaches have been met with great success. However, as any site reliability engineer (SRE) or DevOps team member knows, forward-thinking changes to IT infrastructure have unintended side effects. As tech stacks expand, platform technologies improve and data becomes more ephemeral, a tenuous relationship with system uptime evolves. Welcome to the availability crunch.

To achieve maximum availability, IT leaders must employ domain-agnostic solutions that identify and escalate issues across all telemetry points. These technologies, which we refer to as Artificial Intelligence for IT Operations, create convergence — in other words, they provide IT and DevOps teams with the full picture of event management and downtime. Instead of handling a myriad of events and state-changes, AIOps tools provide teams with the context for those changes. And with that context, they are empowered to quickly and efficiently resolve issues, maintaining higher availability in the process.

Here is why convergence is critical for all organizations.

Exploring the Close Relationship Between Availability and Convergence

Most IT leaders acknowledge the importance of availability. Case in point: according to Moogsoft’s State of Availability report, engineering teams spend more time on monitoring than any other task (more even than vital responsibilities like automation, cloud adoption and testing/QA). Leaders often understand monitoring as a powerful method to prevent downtime because it allows human technicians to catch errors before they become dangerous. Ostensibly, at least.

Yet 45% of issues are reported by customers, not tools, and one-fourth of teams breach their service level objectives (SLOs) due to extended system downtime. This statistic suggests that monitoring is no longer enough to maintain availability.

But what do these issues have to do with convergence? Many organizations face extended outages at least partly because their data architecture is highly fragmented and complex. Instead of relying on a single domain-agnostic tool to synthesize the nature of data errors, these organizations likely rely on point solutions that only provide part of the necessary context. As a result, their system infrastructure is siloed, and system-breaking issues obscurely take root. Organizations with these issues have yet to achieve convergence.

In fact, most organizations have yet to reach full data convergence. Thanks to the complex nature of modern data, most enterprises inevitably juggle disparate data types gathered from various tools. This complicates the process of data analysis and extrapolation — and as a result, jeopardizes uptime. And yet availability is a key requirement for establishing success. Enterprises with low availability often lose revenue and prevent their consumers/constituents from accessing vital offerings, from goods and services to transportation and healthcare.

How to Prioritize Convergence in Your Organization

In a perfect world, all data would be of the same type, and contextuality would be far less complicated. But as our modern business environment primarily exists in the digital world, it is only natural that supporting system uptime requires a more advanced helping hand.

According to Moogsoft research, the average engineering team deals with a staggering 16 monitoring tools. That equates to an avalanche of complex data capable of tanking a system under the right circumstances. Leaders should prioritize establishing a 360-degree view of their organization’s cloud applications to keep up with these varied data sources. Management tools — especially AIOps — are helpful here because they integrate with large tech stacks and ingest data to create a simulacrum of convergence. In other words, even data from varied sources on different servers can be processed as one.

Here are a few factors leaders should consider when deciding which tool to interpolate into their organization’s tech stack.

Domain agnosticism

Leaders seeking a comprehensive application deployment and management solution should consider the benefits of a domain-agnostic approach to AIOps. Domain agnosticism in AIOps provides a generalized approach to application performance management. Instead of localized control of two or three isolated tools, domain-agnostic AIOps protects system-wide operations, collating data from various sources. This is critical for achieving convergence.

Data analysis > data collection

Monitoring tools are helpful but only go so far. If IT leaders feel their department is wasting time collecting data — or neglecting to enact impactful system-wide changes thanks to said data — they should adopt a data analysis tool, not a data synthesis tool. The difference? Monitoring tools provide information, while data analysis tools provide solutions.

High-quality AI and ML

Management tools that rely on AI and machine learning (ML) provide peace of mind because they quickly adapt to emerging threat patterns and organizational infrastructure. That means administrators do not have to worry about manual algorithm entry. They do not have to trust flawed logic patterns, either — instead of falling back onto pre-programmed, if this, then that patterns of threat detection, AI-based management tools learn and grow alongside an organization’s system and IT environment.

IT leaders who carefully consider leading AIOps solutions will find that convergence can be achieved, but only when all events and incidents are processed and contextualized. Piecemeal solutions jeopardize an IT or DevOps team’s ability to process errors in a timely way, which in turn leads to more downtime. Prioritizing the right toolkit should be an IT leader’s top priority going into the new year. And given the importance of availability in our highly digital world, it is crucial IT leaders start adopting that toolkit today.

Hot Topics

The Latest

For many B2B and B2C enterprise brands, technology isn't a core strength. Relying on overly complex architectures (like those that follow a pure MACH doctrine) has been flagged by industry leaders as a source of operational slowdown, creating bottlenecks that limit agility in volatile market conditions ...

FinOps champions crucial cross-departmental collaboration, uniting business, finance, technology and engineering leaders to demystify cloud expenses. Yet, too often, critical cost issues are softened into mere "recommendations" or "insights" — easy to ignore. But what if we adopted security's battle-tested strategy and reframed these as the urgent risks they truly are, demanding immediate action? ...

Two in three IT professionals now cite growing complexity as their top challenge — an urgent signal that the modernization curve may be getting too steep, according to the Rising to the Challenge survey from Checkmk ...

While IT leaders are becoming more comfortable and adept at balancing workloads across on-premises, colocation data centers and the public cloud, there's a key component missing: connectivity, according to the 2025 State of the Data Center Report from CoreSite ...

A perfect storm is brewing in cybersecurity — certificate lifespans shrinking to just 47 days while quantum computing threatens today's encryption. Organizations must embrace ephemeral trust and crypto-agility to survive this dual challenge ...

In MEAN TIME TO INSIGHT Episode 14, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud network observability... 

While companies adopt AI at a record pace, they also face the challenge of finding a smart and scalable way to manage its rapidly growing costs. This requires balancing the massive possibilities inherent in AI with the need to control cloud costs, aim for long-term profitability and optimize spending ...

Telecommunications is expanding at an unprecedented pace ... But progress brings complexity. As WanAware's 2025 Telecom Observability Benchmark Report reveals, many operators are discovering that modernization requires more than physical build outs and CapEx — it also demands the tools and insights to manage, secure, and optimize this fast-growing infrastructure in real time ...

As businesses increasingly rely on high-performance applications to deliver seamless user experiences, the demand for fast, reliable, and scalable data storage systems has never been greater. Redis — an open-source, in-memory data structure store — has emerged as a popular choice for use cases ranging from caching to real-time analytics. But with great performance comes the need for vigilant monitoring ...

Kubernetes was not initially designed with AI's vast resource variability in mind, and the rapid rise of AI has exposed Kubernetes limitations, particularly when it comes to cost and resource efficiency. Indeed, AI workloads differ from traditional applications in that they require a staggering amount and variety of compute resources, and their consumption is far less consistent than traditional workloads ... Considering the speed of AI innovation, teams cannot afford to be bogged down by these constant infrastructure concerns. A solution is needed ...