Data Matters More Than Ever in AIOps
New study reveals key hurdles on the road to AIOps
May 02, 2019

Bhanu Singh
OpsRamp

Share this

Like any new, potentially disruptive technology, artificial intelligence for IT operations, or AIOps has quickly become a trend, and slowly become a reality. It's only been a few years since Gartner coined the term, and yet, 30% of IT teams in large enterprises will roll out AIOps initiatives by 2023. These IT practitioners are still in experimentation mode with artificial intelligence in many cases, and still have concerns about how credible the technology can be. They have concerns over the results of these implementations, and worry about maintaining service availability and uptime during migration.

Because AIOps is still in its infancy, there hasn't been much reporting on what these concerns specifically are. A recent study from OpsRamp targeted these IT managers who have implemented AIOps, and among other data, reports on the primary concerns of this new approach to operations management.

The Devil is in the Data

The report cites data accuracy as the chief concern for IT pros when it comes to AIOps. Two-thirds (67%) of those surveyed revealed it as their top priority. This could be for a variety of reasons, including:

Data Sources: In a world of distributed, hybrid, multi-cloud infrastructure, it's more difficult than ever to capture data on every level of an organization. Different cloud providers report in different ways. And point tools provide analytics across a host of different metrics. It's next to impossible to compare data sources together for a true contextual view of the organization.

Data Quality: Even when that data is captured, these IT teams aren't necessarily sure that it's accurately reflecting the truth about a system. Modern data can be fragmented, hidden, unparsed or too distributed to make sense.

Data Volume: Today's enterprise infrastructure produces an overwhelming amount of metrics on usage, capacity, performance, availability, security, and more. It's easy to get lost in the noise.

Data Consistency: It's impossible to say, under the crushing weight of data today, that IT teams are seeing consistent reporting and results across the organization. But until data is consistent, it can't be actionable.

Data Culture: This is perhaps the biggest change the world of IT operations will resist as it continues to adopt AIOps. Most organizations today are still process-driven, focusing maniacally on improving, tweaking, and changing the process to get a different result. Tomorrow's AIOps-driven organization will become data-driven, putting that same focus on refining data for better outcomes.

Improving Accuracy by Changing Culture

Becoming a data-driven organization means shifting priorities from process milestones to data-based ones, where data manipulation and governance are critical. It's building an organization where data modeling is as important as product development, and where data drives business outcomes. It's where there's as much focused placed on algorithms as applications. Once this culture is installed, where the focus becomes accuracy, consistency, and context, can an operations team truly trust the data. And this is where AIOps can truly come to life.

Data accuracy isn't the only concern when it comes to AIOps adoption, but it's definitely on the minds of IT managers and infrastructure professionals. Where they once just struggled to find skilled practitioners and leading-edge technology to solve problems, they now must also juggle a focus on data. It's clear that enterprises will need more time to build trust in the relevance and reliability of AIOps recommendations. This also represents an opportunity for AIOps vendors to provide solutions that drive improved accuracy, cleaner data, and greater control. AIOps promises to transform how IT operations is managed and maintained. It's likely to do the same for data.

Bhanu Singh is SVP of Product Management and Engineering at OpsRamp
Share this

The Latest

November 07, 2019

Microservices have become the go-to architectural standard in modern distributed systems. While there are plenty of tools and techniques to architect, manage, and automate the deployment of such distributed systems, issues during troubleshooting still happen at the individual service level, thereby prolonging the time taken to resolve an outage ...

November 06, 2019

A recent APMdigest blog by Jean Tunis provided an excellent background on Application Performance Monitoring (APM) and what it does. A further topic that I wanted to touch on though is the need for good quality data. If you are to get the most out of your APM solution possible, you will need to feed it with the best quality data ...

November 05, 2019

Humans and manual processes can no longer keep pace with network innovation, evolution, complexity, and change. That's why we're hearing more about self-driving networks, self-healing networks, intent-based networking, and other concepts. These approaches collectively belong to a growing focus area called AIOps, which aims to apply automation, AI and ML to support modern network operations ...

November 04, 2019

IT outages happen to companies across the globe, regardless of location, annual revenue or size. Even the most mammoth companies are at risk of downtime. Increasingly over the past few years, high-profile IT outages — defined as when the services or systems a business provides suddenly become unavailable — have ended up splashed across national news headlines ...

October 31, 2019

APM tools are ideal for an application owner or a line of business owner to track the performance of their key applications. But these tools have broader applicability to different stakeholders in an organization. In this blog, we will review the teams and functional departments that can make use of an APM tool and how they could put it to work ...

October 30, 2019

Enterprises depending exclusively on legacy monitoring tools are falling behind in business agility and operational efficiency, according to a new study, Prevalence of Legacy Tools Paralyzes Enterprises' Ability to Innovate conducted by Forrester Consulting ...

October 29, 2019

Hyperconverged infrastructure is sometimes referred to as a "data center in a box" because, after the initial cabling and minimal networking configuration, it has all of the features and functionality of the traditional 3-2-1 virtualization architecture (except that single point of failure) ...

October 28, 2019

Hyperconvergence is a term that is gaining rapid interest across the manufacturing industry due to the undeniable benefits it has delivered to IT professionals seeking to modernize their data center, or as is a popular buzzword today ― "transform." Today, in particular, the manufacturing industry is looking to hyperconvergence for the potential benefits it can provide to its emerging and growing use of IoT and its growing need for edge computing systems ...

October 24, 2019

More than 92 percent of US respondents agree that Artificial Intelligence (AI) and Machine Learning (ML) will become important for how they run their digital systems ...

October 23, 2019

Progress has been made with digital transformation projects, however technology leaders are finding that running their digitally transformed organizations is challenging and they are under increased pressure to prove business value, according to a survey from New Relic ...