Skip to main content

Data Matters More Than Ever in AIOps

New study reveals key hurdles on the road to AIOps
Bhanu Singh

Like any new, potentially disruptive technology, artificial intelligence for IT operations, or AIOps has quickly become a trend, and slowly become a reality. It's only been a few years since Gartner coined the term, and yet, 30% of IT teams in large enterprises will roll out AIOps initiatives by 2023. These IT practitioners are still in experimentation mode with artificial intelligence in many cases, and still have concerns about how credible the technology can be. They have concerns over the results of these implementations, and worry about maintaining service availability and uptime during migration.

Because AIOps is still in its infancy, there hasn't been much reporting on what these concerns specifically are. A recent study from OpsRamp targeted these IT managers who have implemented AIOps, and among other data, reports on the primary concerns of this new approach to operations management.

The Devil is in the Data

The report cites data accuracy as the chief concern for IT pros when it comes to AIOps. Two-thirds (67%) of those surveyed revealed it as their top priority. This could be for a variety of reasons, including:

Data Sources: In a world of distributed, hybrid, multi-cloud infrastructure, it's more difficult than ever to capture data on every level of an organization. Different cloud providers report in different ways. And point tools provide analytics across a host of different metrics. It's next to impossible to compare data sources together for a true contextual view of the organization.

Data Quality: Even when that data is captured, these IT teams aren't necessarily sure that it's accurately reflecting the truth about a system. Modern data can be fragmented, hidden, unparsed or too distributed to make sense.

Data Volume: Today's enterprise infrastructure produces an overwhelming amount of metrics on usage, capacity, performance, availability, security, and more. It's easy to get lost in the noise.

Data Consistency: It's impossible to say, under the crushing weight of data today, that IT teams are seeing consistent reporting and results across the organization. But until data is consistent, it can't be actionable.

Data Culture: This is perhaps the biggest change the world of IT operations will resist as it continues to adopt AIOps. Most organizations today are still process-driven, focusing maniacally on improving, tweaking, and changing the process to get a different result. Tomorrow's AIOps-driven organization will become data-driven, putting that same focus on refining data for better outcomes.

Improving Accuracy by Changing Culture

Becoming a data-driven organization means shifting priorities from process milestones to data-based ones, where data manipulation and governance are critical. It's building an organization where data modeling is as important as product development, and where data drives business outcomes. It's where there's as much focused placed on algorithms as applications. Once this culture is installed, where the focus becomes accuracy, consistency, and context, can an operations team truly trust the data. And this is where AIOps can truly come to life.

Data accuracy isn't the only concern when it comes to AIOps adoption, but it's definitely on the minds of IT managers and infrastructure professionals. Where they once just struggled to find skilled practitioners and leading-edge technology to solve problems, they now must also juggle a focus on data. It's clear that enterprises will need more time to build trust in the relevance and reliability of AIOps recommendations. This also represents an opportunity for AIOps vendors to provide solutions that drive improved accuracy, cleaner data, and greater control. AIOps promises to transform how IT operations is managed and maintained. It's likely to do the same for data.

Hot Topics

The Latest

In today’s data and AI driven world, enterprises across industries are utilizing AI to invent new business models, reimagine business and achieve efficiency in operations. However, enterprises may face challenges like flawed or biased AI decisions, sensitive data breaches and rising regulatory risks ...

In MEAN TIME TO INSIGHT Episode 12, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses purchasing new network observability solutions.... 

There's an image problem with mobile app security. While it's critical for highly regulated industries like financial services, it is often overlooked in others. This usually comes down to development priorities, which typically fall into three categories: user experience, app performance, and app security. When dealing with finite resources such as time, shifting priorities, and team skill sets, engineering teams often have to prioritize one over the others. Usually, security is the odd man out ...

Image
Guardsquare

IT outages, caused by poor-quality software updates, are no longer rare incidents but rather frequent occurrences, directly impacting over half of US consumers. According to the 2024 Software Failure Sentiment Report from Harness, many now equate these failures to critical public health crises ...

In just a few months, Google will again head to Washington DC and meet with the government for a two-week remedy trial to cement the fate of what happens to Chrome and its search business in the face of ongoing antitrust court case(s). Or, Google may proactively decide to make changes, putting the power in its hands to outline a suitable remedy. Regardless of the outcome, one thing is sure: there will be far more implications for AI than just a shift in Google's Search business ... 

Image
Chrome

In today's fast-paced digital world, Application Performance Monitoring (APM) is crucial for maintaining the health of an organization's digital ecosystem. However, the complexities of modern IT environments, including distributed architectures, hybrid clouds, and dynamic workloads, present significant challenges ... This blog explores the challenges of implementing application performance monitoring (APM) and offers strategies for overcoming them ...

Service disruptions remain a critical concern for IT and business executives, with 88% of respondents saying they believe another major incident will occur in the next 12 months, according to a study from PagerDuty ...

IT infrastructure (on-premises, cloud, or hybrid) is becoming larger and more complex. IT management tools need data to drive better decision making and more process automation to complement manual intervention by IT staff. That is why smart organizations invest in the systems and strategies needed to make their IT infrastructure more resilient in the event of disruption, and why many are turning to application performance monitoring (APM) in conjunction with high availability (HA) clusters ...

In today's data-driven world, the management of databases has become increasingly complex and critical. The following are findings from Redgate's 2025 The State of the Database Landscape report ...

With the 2027 deadline for SAP S/4HANA migrations fast approaching, organizations are accelerating their transition plans ... For organizations that intend to remain on SAP ECC in the near-term, the focus has shifted to improving operational efficiencies and meeting demands for faster cycle times ...

Data Matters More Than Ever in AIOps

New study reveals key hurdles on the road to AIOps
Bhanu Singh

Like any new, potentially disruptive technology, artificial intelligence for IT operations, or AIOps has quickly become a trend, and slowly become a reality. It's only been a few years since Gartner coined the term, and yet, 30% of IT teams in large enterprises will roll out AIOps initiatives by 2023. These IT practitioners are still in experimentation mode with artificial intelligence in many cases, and still have concerns about how credible the technology can be. They have concerns over the results of these implementations, and worry about maintaining service availability and uptime during migration.

Because AIOps is still in its infancy, there hasn't been much reporting on what these concerns specifically are. A recent study from OpsRamp targeted these IT managers who have implemented AIOps, and among other data, reports on the primary concerns of this new approach to operations management.

The Devil is in the Data

The report cites data accuracy as the chief concern for IT pros when it comes to AIOps. Two-thirds (67%) of those surveyed revealed it as their top priority. This could be for a variety of reasons, including:

Data Sources: In a world of distributed, hybrid, multi-cloud infrastructure, it's more difficult than ever to capture data on every level of an organization. Different cloud providers report in different ways. And point tools provide analytics across a host of different metrics. It's next to impossible to compare data sources together for a true contextual view of the organization.

Data Quality: Even when that data is captured, these IT teams aren't necessarily sure that it's accurately reflecting the truth about a system. Modern data can be fragmented, hidden, unparsed or too distributed to make sense.

Data Volume: Today's enterprise infrastructure produces an overwhelming amount of metrics on usage, capacity, performance, availability, security, and more. It's easy to get lost in the noise.

Data Consistency: It's impossible to say, under the crushing weight of data today, that IT teams are seeing consistent reporting and results across the organization. But until data is consistent, it can't be actionable.

Data Culture: This is perhaps the biggest change the world of IT operations will resist as it continues to adopt AIOps. Most organizations today are still process-driven, focusing maniacally on improving, tweaking, and changing the process to get a different result. Tomorrow's AIOps-driven organization will become data-driven, putting that same focus on refining data for better outcomes.

Improving Accuracy by Changing Culture

Becoming a data-driven organization means shifting priorities from process milestones to data-based ones, where data manipulation and governance are critical. It's building an organization where data modeling is as important as product development, and where data drives business outcomes. It's where there's as much focused placed on algorithms as applications. Once this culture is installed, where the focus becomes accuracy, consistency, and context, can an operations team truly trust the data. And this is where AIOps can truly come to life.

Data accuracy isn't the only concern when it comes to AIOps adoption, but it's definitely on the minds of IT managers and infrastructure professionals. Where they once just struggled to find skilled practitioners and leading-edge technology to solve problems, they now must also juggle a focus on data. It's clear that enterprises will need more time to build trust in the relevance and reliability of AIOps recommendations. This also represents an opportunity for AIOps vendors to provide solutions that drive improved accuracy, cleaner data, and greater control. AIOps promises to transform how IT operations is managed and maintained. It's likely to do the same for data.

Hot Topics

The Latest

In today’s data and AI driven world, enterprises across industries are utilizing AI to invent new business models, reimagine business and achieve efficiency in operations. However, enterprises may face challenges like flawed or biased AI decisions, sensitive data breaches and rising regulatory risks ...

In MEAN TIME TO INSIGHT Episode 12, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses purchasing new network observability solutions.... 

There's an image problem with mobile app security. While it's critical for highly regulated industries like financial services, it is often overlooked in others. This usually comes down to development priorities, which typically fall into three categories: user experience, app performance, and app security. When dealing with finite resources such as time, shifting priorities, and team skill sets, engineering teams often have to prioritize one over the others. Usually, security is the odd man out ...

Image
Guardsquare

IT outages, caused by poor-quality software updates, are no longer rare incidents but rather frequent occurrences, directly impacting over half of US consumers. According to the 2024 Software Failure Sentiment Report from Harness, many now equate these failures to critical public health crises ...

In just a few months, Google will again head to Washington DC and meet with the government for a two-week remedy trial to cement the fate of what happens to Chrome and its search business in the face of ongoing antitrust court case(s). Or, Google may proactively decide to make changes, putting the power in its hands to outline a suitable remedy. Regardless of the outcome, one thing is sure: there will be far more implications for AI than just a shift in Google's Search business ... 

Image
Chrome

In today's fast-paced digital world, Application Performance Monitoring (APM) is crucial for maintaining the health of an organization's digital ecosystem. However, the complexities of modern IT environments, including distributed architectures, hybrid clouds, and dynamic workloads, present significant challenges ... This blog explores the challenges of implementing application performance monitoring (APM) and offers strategies for overcoming them ...

Service disruptions remain a critical concern for IT and business executives, with 88% of respondents saying they believe another major incident will occur in the next 12 months, according to a study from PagerDuty ...

IT infrastructure (on-premises, cloud, or hybrid) is becoming larger and more complex. IT management tools need data to drive better decision making and more process automation to complement manual intervention by IT staff. That is why smart organizations invest in the systems and strategies needed to make their IT infrastructure more resilient in the event of disruption, and why many are turning to application performance monitoring (APM) in conjunction with high availability (HA) clusters ...

In today's data-driven world, the management of databases has become increasingly complex and critical. The following are findings from Redgate's 2025 The State of the Database Landscape report ...

With the 2027 deadline for SAP S/4HANA migrations fast approaching, organizations are accelerating their transition plans ... For organizations that intend to remain on SAP ECC in the near-term, the focus has shifted to improving operational efficiencies and meeting demands for faster cycle times ...