Skip to main content

Driving Marketing Observability: 4 Actionable Strategies to Cut Down Data Debt Costs

Mariona Mart
Trackingplan

If there's one thing we should tame in today's data-driven marketing landscape, this would be data debt, a silent menace threatening to undermine all the trust you've put in the data-driven decisions that guide your strategies. This blog aims to explore the true costs of data debt in marketing operations, offering four actionable strategies to mitigate them through enhanced marketing observability.

Navigating the True Costs of Data Debt in Marketing Operations

Data debt refers to the accumulation of data errors, inconsistencies, and inefficiencies in managing and leveraging data effectively. To put it simply, data debt is the consequence — both in terms of time and money — of poor data quality within your data-driven company.

According to a report by Gartner, organizations lacking proper data quality management suffer an average annual loss of $15 million, stemming from decreased productivity and missed revenue opportunities.

More specifically, Forrester estimates that dealing with the complexities of data cleaning can consume over 40% of a data analyst's time. Related to this previous point, The New York Times has also highlighted that this usually leads to what data scientists refer to as "data wrangling," "data munging" and "data janitor" work, which demands between 50% to 80% of their time for collecting and preparing unruly data before it can be effectively used for strategic decision-making.

Embracing the Power of Marketing Observability to Cut Down Data Debt Costs

To address such challenges and take proactive steps in managing data debt, marketing observability has emerged as a crucial ally to mitigate those risks.

Marketing observability refers to the ability to gain insights into the performance and behavior of marketing operations through comprehensive data monitoring, analysis, and visualization. This involves implementing robust mechanisms to monitor and understand the performance and behavior of marketing activities in real-time, enabling organizations to identify and address issues related to data quality and accuracy promptly to ensure data is accurately collected, responsibly managed, and integrated efficiently across teams and platforms.

4 Actionable Strategies for Cutting Down Data Debt Costs

Fortunately, there's an antidote that empowers organizations to effectively control and mitigate data debt. Let's dive into four actionable strategies that will help you cut down data debt costs.

1. Establish Data Quality Standards

Establishing robust data quality standards is paramount to effectively mitigate data debt costs. This involves implementing data validation processes to ensure the accuracy, completeness, and reliability of your data collection efforts.

To achieve this, marketing observability emerges as a crucial ally, offering various measures to establish data quality standards:

Regular Data Cleansing Procedures: Regular cleansing procedures are key to proactively removing duplicate records, correcting inaccuracies, and standardizing data formats to prevent data clutter and ensure the integrity of our datasets.

Continuous Monitoring: Implementing real-time data monitoring mechanisms can also be a great idea to detect anomalies that do not align with our data quality standards, allowing organizations to promptly identify and rectify discrepancies before they escalate into significant issues.

Thorough Audits: Conducting periodic audits to assess data accuracy, completeness, and consistency can also serve as an opportunity to validate data against predefined quality benchmarks and identify any areas that require improvement.

2. Improve Data Infrastructure

Another actionable strategy for cutting down data debt costs lies in building a resilient data infrastructure for maximizing the value of your marketing efforts. This entails ensuring scalability and flexibility in data systems to accommodate growing volumes of data in line with evolving business requirements.

Apart from scalability and flexibility — required to scale and adapt to changing market dynamics without compromising performance or reliability — centralization is also key when improving data infrastructure. This involves consolidating disparate data sources and siloed systems into a centralized data management platform to streamline data access, improve data consistency, and facilitate cross-functional collaboration.

3. Enhance Data Governance

One of the primary causes of data debt is the lack of data governance. Consequently, addressing data governance and establishing policies and procedures for effective data management is key for mitigating its costs.

Data governance is considered as the basis on which policies, procedures, and frameworks to ensure the quality, security, and privacy of data converge. At its core, data governance involves establishing clear guidelines and accountability mechanisms to govern the lifecycle of data, fostering a culture of data stewardship that offers transparency and protection against ineffective data management and non-compliance.

4. Leverage Advanced Analytics and AI

Finally, another actionable strategy to proactively address data debt involves harnessing the power of predictive analytics and AI. By leveraging advanced analytics and AI-driven insights, businesses can anticipate data issues and take proactive measures to address them before they escalate into larger problems.

Moreover, while analyzing historical data patterns can allow you to forecast future trends and identify potential data anomalies, integrating AI technologies can enhance the effectiveness of your data management processes, allowing you to automate daunting tasks, optimize decision-making, and uncover hidden insights within vast datasets.

A recent report by McKinsey & Company highlights the transformative impact of AI and advanced analytics in marketing operations, concluding that companies that harness AI and advanced analytics experience a 20% increase in customer engagement and a significant 15% reduction in customer acquisition costs.

Conclusion

In conclusion, prioritizing marketing observability tools and conducting proactive strategies to stay ahead of data debt challenges are crucial to mitigate their direct and indirect costs. By embracing marketing observability and implementing actionable measures, organizations can harness the power of their data to drive informed decision-making and strategic planning.

It's time for businesses to embrace the transformative potential of their marketing data and pave the way for future success.

Mariona Mart is a Marketing Specialist and Coordinator at Trackingplan

Hot Topics

The Latest

In MEAN TIME TO INSIGHT Episode 15, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Do-It-Yourself Network Automation ... 

Zero-day vulnerabilities — security flaws that are exploited before developers even know they exist — pose one of the greatest risks to modern organizations. Recently, such vulnerabilities have been discovered in well-known VPN systems like Ivanti and Fortinet, highlighting just how outdated these legacy technologies have become in defending against fast-evolving cyber threats ... To protect digital assets and remote workers in today's environment, companies need more than patchwork solutions. They need architecture that is secure by design ...

Traditional observability requires users to leap across different platforms or tools for metrics, logs, or traces and related issues manually, which is very time-consuming, so as to reasonably ascertain the root cause. Observability 2.0 fixes this by unifying all telemetry data, logs, metrics, and traces into a single, context-rich pipeline that flows into one smart platform. But this is far from just having a bunch of additional data; this data is actionable, predictive, and tied to revenue realization ...

64% of enterprise networking teams use internally developed software or scripts for network automation, but 61% of those teams spend six or more hours per week debugging and maintaining them, according to From Scripts to Platforms: Why Homegrown Tools Dominate Network Automation and How Vendors Can Help, my latest EMA report ...

Cloud computing has transformed how we build and scale software, but it has also quietly introduced one of the most persistent challenges in modern IT: cost visibility and control ... So why, after more than a decade of cloud adoption, are cloud costs still spiraling out of control? The answer lies not in tooling but in culture ...

CEOs are committed to advancing AI solutions across their organization even as they face challenges from accelerating technology adoption, according to the IBM CEO Study. The survey revealed that executive respondents expect the growth rate of AI investments to more than double in the next two years, and 61% confirm they are actively adopting AI agents today and preparing to implement them at scale ...

Image
IBM

 

A major architectural shift is underway across enterprise networks, according to a new global study from Cisco. As AI assistants, agents, and data-driven workloads reshape how work gets done, they're creating faster, more dynamic, more latency-sensitive, and more complex network traffic. Combined with the ubiquity of connected devices, 24/7 uptime demands, and intensifying security threats, these shifts are driving infrastructure to adapt and evolve ...

Image
Cisco

The development of banking apps was supposed to provide users with convenience, control and piece of mind. However, for thousands of Halifax customers recently, a major mobile outage caused the exact opposite, leaving customers unable to check balances, or pay bills, sparking widespread frustration. This wasn't an isolated incident ... So why are these failures still happening? ...

Cyber threats are growing more sophisticated every day, and at their forefront are zero-day vulnerabilities. These elusive security gaps are exploited before a fix becomes available, making them among the most dangerous threats in today's digital landscape ... This guide will explore what these vulnerabilities are, how they work, why they pose such a significant threat, and how modern organizations can stay protected ...

The prevention of data center outages continues to be a strategic priority for data center owners and operators. Infrastructure equipment has improved, but the complexity of modern architectures and evolving external threats presents new risks that operators must actively manage, according to the Data Center Outage Analysis 2025 from Uptime Institute ...

Driving Marketing Observability: 4 Actionable Strategies to Cut Down Data Debt Costs

Mariona Mart
Trackingplan

If there's one thing we should tame in today's data-driven marketing landscape, this would be data debt, a silent menace threatening to undermine all the trust you've put in the data-driven decisions that guide your strategies. This blog aims to explore the true costs of data debt in marketing operations, offering four actionable strategies to mitigate them through enhanced marketing observability.

Navigating the True Costs of Data Debt in Marketing Operations

Data debt refers to the accumulation of data errors, inconsistencies, and inefficiencies in managing and leveraging data effectively. To put it simply, data debt is the consequence — both in terms of time and money — of poor data quality within your data-driven company.

According to a report by Gartner, organizations lacking proper data quality management suffer an average annual loss of $15 million, stemming from decreased productivity and missed revenue opportunities.

More specifically, Forrester estimates that dealing with the complexities of data cleaning can consume over 40% of a data analyst's time. Related to this previous point, The New York Times has also highlighted that this usually leads to what data scientists refer to as "data wrangling," "data munging" and "data janitor" work, which demands between 50% to 80% of their time for collecting and preparing unruly data before it can be effectively used for strategic decision-making.

Embracing the Power of Marketing Observability to Cut Down Data Debt Costs

To address such challenges and take proactive steps in managing data debt, marketing observability has emerged as a crucial ally to mitigate those risks.

Marketing observability refers to the ability to gain insights into the performance and behavior of marketing operations through comprehensive data monitoring, analysis, and visualization. This involves implementing robust mechanisms to monitor and understand the performance and behavior of marketing activities in real-time, enabling organizations to identify and address issues related to data quality and accuracy promptly to ensure data is accurately collected, responsibly managed, and integrated efficiently across teams and platforms.

4 Actionable Strategies for Cutting Down Data Debt Costs

Fortunately, there's an antidote that empowers organizations to effectively control and mitigate data debt. Let's dive into four actionable strategies that will help you cut down data debt costs.

1. Establish Data Quality Standards

Establishing robust data quality standards is paramount to effectively mitigate data debt costs. This involves implementing data validation processes to ensure the accuracy, completeness, and reliability of your data collection efforts.

To achieve this, marketing observability emerges as a crucial ally, offering various measures to establish data quality standards:

Regular Data Cleansing Procedures: Regular cleansing procedures are key to proactively removing duplicate records, correcting inaccuracies, and standardizing data formats to prevent data clutter and ensure the integrity of our datasets.

Continuous Monitoring: Implementing real-time data monitoring mechanisms can also be a great idea to detect anomalies that do not align with our data quality standards, allowing organizations to promptly identify and rectify discrepancies before they escalate into significant issues.

Thorough Audits: Conducting periodic audits to assess data accuracy, completeness, and consistency can also serve as an opportunity to validate data against predefined quality benchmarks and identify any areas that require improvement.

2. Improve Data Infrastructure

Another actionable strategy for cutting down data debt costs lies in building a resilient data infrastructure for maximizing the value of your marketing efforts. This entails ensuring scalability and flexibility in data systems to accommodate growing volumes of data in line with evolving business requirements.

Apart from scalability and flexibility — required to scale and adapt to changing market dynamics without compromising performance or reliability — centralization is also key when improving data infrastructure. This involves consolidating disparate data sources and siloed systems into a centralized data management platform to streamline data access, improve data consistency, and facilitate cross-functional collaboration.

3. Enhance Data Governance

One of the primary causes of data debt is the lack of data governance. Consequently, addressing data governance and establishing policies and procedures for effective data management is key for mitigating its costs.

Data governance is considered as the basis on which policies, procedures, and frameworks to ensure the quality, security, and privacy of data converge. At its core, data governance involves establishing clear guidelines and accountability mechanisms to govern the lifecycle of data, fostering a culture of data stewardship that offers transparency and protection against ineffective data management and non-compliance.

4. Leverage Advanced Analytics and AI

Finally, another actionable strategy to proactively address data debt involves harnessing the power of predictive analytics and AI. By leveraging advanced analytics and AI-driven insights, businesses can anticipate data issues and take proactive measures to address them before they escalate into larger problems.

Moreover, while analyzing historical data patterns can allow you to forecast future trends and identify potential data anomalies, integrating AI technologies can enhance the effectiveness of your data management processes, allowing you to automate daunting tasks, optimize decision-making, and uncover hidden insights within vast datasets.

A recent report by McKinsey & Company highlights the transformative impact of AI and advanced analytics in marketing operations, concluding that companies that harness AI and advanced analytics experience a 20% increase in customer engagement and a significant 15% reduction in customer acquisition costs.

Conclusion

In conclusion, prioritizing marketing observability tools and conducting proactive strategies to stay ahead of data debt challenges are crucial to mitigate their direct and indirect costs. By embracing marketing observability and implementing actionable measures, organizations can harness the power of their data to drive informed decision-making and strategic planning.

It's time for businesses to embrace the transformative potential of their marketing data and pave the way for future success.

Mariona Mart is a Marketing Specialist and Coordinator at Trackingplan

Hot Topics

The Latest

In MEAN TIME TO INSIGHT Episode 15, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Do-It-Yourself Network Automation ... 

Zero-day vulnerabilities — security flaws that are exploited before developers even know they exist — pose one of the greatest risks to modern organizations. Recently, such vulnerabilities have been discovered in well-known VPN systems like Ivanti and Fortinet, highlighting just how outdated these legacy technologies have become in defending against fast-evolving cyber threats ... To protect digital assets and remote workers in today's environment, companies need more than patchwork solutions. They need architecture that is secure by design ...

Traditional observability requires users to leap across different platforms or tools for metrics, logs, or traces and related issues manually, which is very time-consuming, so as to reasonably ascertain the root cause. Observability 2.0 fixes this by unifying all telemetry data, logs, metrics, and traces into a single, context-rich pipeline that flows into one smart platform. But this is far from just having a bunch of additional data; this data is actionable, predictive, and tied to revenue realization ...

64% of enterprise networking teams use internally developed software or scripts for network automation, but 61% of those teams spend six or more hours per week debugging and maintaining them, according to From Scripts to Platforms: Why Homegrown Tools Dominate Network Automation and How Vendors Can Help, my latest EMA report ...

Cloud computing has transformed how we build and scale software, but it has also quietly introduced one of the most persistent challenges in modern IT: cost visibility and control ... So why, after more than a decade of cloud adoption, are cloud costs still spiraling out of control? The answer lies not in tooling but in culture ...

CEOs are committed to advancing AI solutions across their organization even as they face challenges from accelerating technology adoption, according to the IBM CEO Study. The survey revealed that executive respondents expect the growth rate of AI investments to more than double in the next two years, and 61% confirm they are actively adopting AI agents today and preparing to implement them at scale ...

Image
IBM

 

A major architectural shift is underway across enterprise networks, according to a new global study from Cisco. As AI assistants, agents, and data-driven workloads reshape how work gets done, they're creating faster, more dynamic, more latency-sensitive, and more complex network traffic. Combined with the ubiquity of connected devices, 24/7 uptime demands, and intensifying security threats, these shifts are driving infrastructure to adapt and evolve ...

Image
Cisco

The development of banking apps was supposed to provide users with convenience, control and piece of mind. However, for thousands of Halifax customers recently, a major mobile outage caused the exact opposite, leaving customers unable to check balances, or pay bills, sparking widespread frustration. This wasn't an isolated incident ... So why are these failures still happening? ...

Cyber threats are growing more sophisticated every day, and at their forefront are zero-day vulnerabilities. These elusive security gaps are exploited before a fix becomes available, making them among the most dangerous threats in today's digital landscape ... This guide will explore what these vulnerabilities are, how they work, why they pose such a significant threat, and how modern organizations can stay protected ...

The prevention of data center outages continues to be a strategic priority for data center owners and operators. Infrastructure equipment has improved, but the complexity of modern architectures and evolving external threats presents new risks that operators must actively manage, according to the Data Center Outage Analysis 2025 from Uptime Institute ...