Gartner, Inc. predicts that by 2025, 70% of organizations will shift their focus from big to small and wide data, providing more context for analytics and making artificial intelligence (AI) less data hungry.
"Disruptions such as the COVID-19 pandemic is causing historical data that reflects past conditions to quickly become obsolete, which is breaking many production AI and machine learning (ML) models," said Jim Hare, Distinguished Research VP at Gartner. "In addition, decision making by humans and AI has become more complex and demanding, and overly reliant on data hungry deep learning approaches."
Gartner analysts discussed new data and analytics (D&A) techniques to build a resilient, adaptable and data literate organization during the Gartner Data & Analytics Summit 2021.
D&A leaders need to turn to new analytics techniques knows as "small data" and "wide data".
"Taken together they are capable of using available data more effectively, either by reducing the required volume or by extracting more value from unstructured, diverse data sources," said Hare.
Small and Wide Data Allow More Robust Analytics and AI
Small data is an approach that requires less data but still offers useful insights. The approach includes certain time-series analysis techniques or few-shot learning, synthetic data, or self-supervised learning.
Wide data enables the analysis and synergy of a variety of small and large, unstructured, and structured data sources. It applies X analytics, with X standing for finding links between data sources, as well as for a diversity of data formats. These formats include tabular, text, image, video, audio, voice, temperature, or even smell and vibration.
"Both approaches facilitate more robust analytics and AI, reducing an organization's dependency on big data and enabling a richer, more complete situational awareness or 360-degree view," said Hare. "D&A leaders apply both techniques to address challenges such as low availability of training data or developing more robust models by using a wider variety of data."
Small and Wide Data Applications
Potential areas where small and wide data can be used are demand forecasting in retail, real-time behavioral and emotional intelligence in customer service applied to hyper-personalization, and customer experience improvement.
Other areas include physical security or fraud detection and adaptive autonomous systems, such as robots, which constantly learn by the analysis of correlations in time and space of events in different sensory channels.
The Latest
Artificial intelligence (AI) is rapidly reshaping industries around the world. From optimizing business processes to unlocking new levels of innovation, AI is a critical driver of success for modern enterprises. As a result, business leaders — from DevOps engineers to CTOs — are under pressure to incorporate AI into their workflows to stay competitive. But the question isn't whether AI should be adopted — it's how ...
The mobile app industry continues to grow in size, complexity, and competition. Also not slowing down? Consumer expectations are rising exponentially along with the use of mobile apps. To meet these expectations, mobile teams need to take a comprehensive, holistic approach to their app experience ...
Users have become digital hoarders, saving everything they handle, including outdated reports, duplicate files and irrelevant documents that make it difficult to find critical information, slowing down systems and productivity. In digital terms, they have simply shoved the mess off their desks and into the virtual storage bins ...
Today we could be witnessing the dawn of a new age in software development, transformed by Artificial Intelligence (AI). But is AI a gateway or a precipice? Is AI in software development transformative, just the latest helpful tool, or a bunch of hype? To help with this assessment, DEVOPSdigest invited experts across the industry to comment on how AI can support the SDLC. In this epic multi-part series to be posted over the next several weeks, DEVOPSdigest will explore the advantages and disadvantages; the current state of maturity and adoption; and how AI will impact the processes, the developers, and the future of software development ...
Half of all employees are using Shadow AI (i.e. non-company issued AI tools), according to a new report by Software AG ...
On their digital transformation journey, companies are migrating more workloads to the cloud, which can incur higher costs during the process due to the higher volume of cloud resources needed ... Here are four critical components of a cloud governance framework that can help keep cloud costs under control ...
Operational resilience is an organization's ability to predict, respond to, and prevent unplanned work to drive reliable customer experiences and protect revenue. This doesn't just apply to downtime; it also covers service degradation due to latency or other factors. But make no mistake — when things go sideways, the bottom line and the customer are impacted ...
Organizations continue to struggle to generate business value with AI. Despite increased investments in AI, only 34% of AI professionals feel fully equipped with the tools necessary to meet their organization's AI goals, according to The Unmet AI Needs Surveywas conducted by DataRobot ...
High-business-impact outages are costly, and a fast MTTx (mean-time-to-detect (MTTD) and mean-time-to-resolve (MTTR)) is crucial, with 62% of businesses reporting a loss of at least $1 million per hour of downtime ...
Organizations recognize the benefits of generative AI (GenAI) yet need help to implement the infrastructure necessary to deploy it, according to The Future of AI in IT Operations: Benefits and Challenges, a new report commissioned by ScienceLogic ...