Improving Application Performance with NVMe Storage - Part 1
The Rise of AI and ML Driving Parallel Computing Requirements
April 29, 2019

Zivan Ori
E8 Storage

Share this

As computing technology and data algorithms have advanced over the years, the ways in which technology has been applied to real world challenges have grown more automated and autonomous. This has given rise to a completely new set of computing workloads for Machine Learning which drives Artificial Intelligence applications (aka AI / ML).

AI / ML can be applied across a broad spectrum of applications and industries. Financial analysis with real-time analytics is used for predicting investments and drives the FinTech industrys needs for high performance computing. Real-time image recognition is a key enabler for self-driving vehicles, while facial recognition is used by law enforcement across the globe. Manufacturing uses image recognition technology to spot defects in materials, organizations such as NOAA use satellite imagery to spot changes in weather, while social media platforms use image recognition to tag photos of friends and family.

What is common among these uses cases is the need for a high level of parallel computing power, coupled with a high-performance low latency architecture to enable parallel processing of data in real-time across the compute cluster. The "training" phase of machine learning is critical and can take an excessively long time, especially as the training data set grows exponentially to enable deep learning for AI.

With storage performance now recognized as a critical component of AI/ML application performance, the next step is to identify the ideal storage platform. Non-Volatile Memory Express (NVMe) based storage systems have gained traction as the storage media of choice to deliver the best throughput and latency. Shared NVMe storage systems unlock the performance of NVMe, and offer a strong alternative to using local NVMe SSDs inside of GPU nodes.

The Rise of GPUs for AI / ML

GPUs were originally created for high performance image creation, and are very efficient at manipulating computer graphics and image processing. Their highly parallel structure makes them much more efficient than general purpose CPUs for algorithms where the processing of large blocks is done in parallel. For this reason, GPUs have found strong adoption in the AI / ML use case as they allow for a high degree of parallel computing and current AI focused applications have been optimized to run on GPU based computing clusters.

With the powerful compute performance of GPUs, the bottleneck moves to other areas of the AI / ML architecture. For example, the volume of data required to feed machine learning requires massive parallel read access to shared files from the storage subsystem across all nodes in the GPU cluster. This creates a performance challenge that NVMe shared storage systems are ideally suited to address.

Shared NVMe Storage for High Performance Machine Learning (ML)

One of benefits of shared NVMe storage is the ability to create even deeper neural networks due to the inherent high performance of shared storage, opening the door for future models that cannot be achieved today with non-shared NVMe storage solutions.

Today, there are storage solutions that offer patented architectures built from the ground up to leverage NVMe. The key to performance and scalability is the separation of control and data path operations between the the storage controller software and the host-side agents. The storage controller software provides centralized control and management, while the agents manage data path operations with direct access to shared storage volumes.

While AI / ML workloads are run exclusively on the GPUs within the cluster, that doesn't mean that CPUs have been eliminated from the GPU clusters completely. The operating system and drivers still leverage the CPUs, but while the machine learning training is in progress, the CPU is relatively idle. This provides the perfect opportunity for an NVMe based storage architecture to leverage the idle CPU computing capacity for a high performance distributed storage approach.

With NVMe protocol supporting exponentially more connections per SSD, the storage agents use RDMA to give each GPU node a direct connection to the drives. This approach enables the agents to perform up to 90% of the data path operations between the GPU nodes and storage, reducing latency to be on par with local SSDs.

In this scenario, running the NVMe based storage agent on the idle CPU cores of the GPU nodes enables the NVMe based storage to deliver 10x better performance than competing all-flash solutions, while leveraging existing compute resources that are already installed and available to use.

Read Part 2: Local versus Shared Storage for Artificial Intelligence (AI) and Machine Learning (ML)

Zivan Ori is CEO and Co-Founder of E8 Storage
Share this

The Latest

April 24, 2024

Over the last 20 years Digital Employee Experience has become a necessity for companies committed to digital transformation and improving IT experiences. In fact, by 2025, more than 50% of IT organizations will use digital employee experience to prioritize and measure digital initiative success ...

April 23, 2024

While most companies are now deploying cloud-based technologies, the 2024 Secure Cloud Networking Field Report from Aviatrix found that there is a silent struggle to maximize value from those investments. Many of the challenges organizations have faced over the past several years have evolved, but continue today ...

April 22, 2024

In our latest research, Cisco's The App Attention Index 2023: Beware the Application Generation, 62% of consumers report their expectations for digital experiences are far higher than they were two years ago, and 64% state they are less forgiving of poor digital services than they were just 12 months ago ...

April 19, 2024

In MEAN TIME TO INSIGHT Episode 5, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses the network source of truth ...

April 18, 2024

A vast majority (89%) of organizations have rapidly expanded their technology in the past few years and three quarters (76%) say it's brought with it increased "chaos" that they have to manage, according to Situation Report 2024: Managing Technology Chaos from Software AG ...

April 17, 2024

In 2024 the number one challenge facing IT teams is a lack of skilled workers, and many are turning to automation as an answer, according to IT Trends: 2024 Industry Report ...

April 16, 2024

Organizations are continuing to embrace multicloud environments and cloud-native architectures to enable rapid transformation and deliver secure innovation. However, despite the speed, scale, and agility enabled by these modern cloud ecosystems, organizations are struggling to manage the explosion of data they create, according to The state of observability 2024: Overcoming complexity through AI-driven analytics and automation strategies, a report from Dynatrace ...

April 15, 2024

Organizations recognize the value of observability, but only 10% of them are actually practicing full observability of their applications and infrastructure. This is among the key findings from the recently completed Logz.io 2024 Observability Pulse Survey and Report ...

April 11, 2024

Businesses must adopt a comprehensive Internet Performance Monitoring (IPM) strategy, says Enterprise Management Associates (EMA), a leading IT analyst research firm. This strategy is crucial to bridge the significant observability gap within today's complex IT infrastructures. The recommendation is particularly timely, given that 99% of enterprises are expanding their use of the Internet as a primary connectivity conduit while facing challenges due to the inefficiency of multiple, disjointed monitoring tools, according to Modern Enterprises Must Boost Observability with Internet Performance Monitoring, a new report from EMA and Catchpoint ...

April 10, 2024

Choosing the right approach is critical with cloud monitoring in hybrid environments. Otherwise, you may drive up costs with features you don’t need and risk diminishing the visibility of your on-premises IT ...