Skip to main content

Improving Application Performance with NVMe Storage - Part 1

The Rise of AI and ML Driving Parallel Computing Requirements
Zivan Ori

As computing technology and data algorithms have advanced over the years, the ways in which technology has been applied to real world challenges have grown more automated and autonomous. This has given rise to a completely new set of computing workloads for Machine Learning which drives Artificial Intelligence applications (aka AI / ML).

AI / ML can be applied across a broad spectrum of applications and industries. Financial analysis with real-time analytics is used for predicting investments and drives the FinTech industrys needs for high performance computing. Real-time image recognition is a key enabler for self-driving vehicles, while facial recognition is used by law enforcement across the globe. Manufacturing uses image recognition technology to spot defects in materials, organizations such as NOAA use satellite imagery to spot changes in weather, while social media platforms use image recognition to tag photos of friends and family.

What is common among these uses cases is the need for a high level of parallel computing power, coupled with a high-performance low latency architecture to enable parallel processing of data in real-time across the compute cluster. The "training" phase of machine learning is critical and can take an excessively long time, especially as the training data set grows exponentially to enable deep learning for AI.

With storage performance now recognized as a critical component of AI/ML application performance, the next step is to identify the ideal storage platform. Non-Volatile Memory Express (NVMe) based storage systems have gained traction as the storage media of choice to deliver the best throughput and latency. Shared NVMe storage systems unlock the performance of NVMe, and offer a strong alternative to using local NVMe SSDs inside of GPU nodes.

The Rise of GPUs for AI / ML

GPUs were originally created for high performance image creation, and are very efficient at manipulating computer graphics and image processing. Their highly parallel structure makes them much more efficient than general purpose CPUs for algorithms where the processing of large blocks is done in parallel. For this reason, GPUs have found strong adoption in the AI / ML use case as they allow for a high degree of parallel computing and current AI focused applications have been optimized to run on GPU based computing clusters.

With the powerful compute performance of GPUs, the bottleneck moves to other areas of the AI / ML architecture. For example, the volume of data required to feed machine learning requires massive parallel read access to shared files from the storage subsystem across all nodes in the GPU cluster. This creates a performance challenge that NVMe shared storage systems are ideally suited to address.

Shared NVMe Storage for High Performance Machine Learning (ML)

One of benefits of shared NVMe storage is the ability to create even deeper neural networks due to the inherent high performance of shared storage, opening the door for future models that cannot be achieved today with non-shared NVMe storage solutions.

Today, there are storage solutions that offer patented architectures built from the ground up to leverage NVMe. The key to performance and scalability is the separation of control and data path operations between the the storage controller software and the host-side agents. The storage controller software provides centralized control and management, while the agents manage data path operations with direct access to shared storage volumes.

While AI / ML workloads are run exclusively on the GPUs within the cluster, that doesn't mean that CPUs have been eliminated from the GPU clusters completely. The operating system and drivers still leverage the CPUs, but while the machine learning training is in progress, the CPU is relatively idle. This provides the perfect opportunity for an NVMe based storage architecture to leverage the idle CPU computing capacity for a high performance distributed storage approach.

With NVMe protocol supporting exponentially more connections per SSD, the storage agents use RDMA to give each GPU node a direct connection to the drives. This approach enables the agents to perform up to 90% of the data path operations between the GPU nodes and storage, reducing latency to be on par with local SSDs.

In this scenario, running the NVMe based storage agent on the idle CPU cores of the GPU nodes enables the NVMe based storage to deliver 10x better performance than competing all-flash solutions, while leveraging existing compute resources that are already installed and available to use.

Read Part 2: Local versus Shared Storage for Artificial Intelligence (AI) and Machine Learning (ML)

The Latest

People want to be doing more engaging work, yet their day often gets overrun by addressing urgent IT tickets. But thanks to advances in AI "vibe coding," where a user describes what they want in plain English and the AI turns it into working code, IT teams can automate ticketing workflows and offload much of that work. Password resets that used to take 5 minutes per request now get resolved automatically ...

Governments and social platforms face an escalating challenge: hyperrealistic synthetic media now spreads faster than legacy moderation systems can react. From pandemic-related conspiracies to manipulated election content, disinformation has moved beyond "false text" into the realm of convincing audiovisual deception ...

Traditional monitoring often stops at uptime and server health without any integrated insights. Cross-platform observability covers not just infrastructure telemetry but also client-side behavior, distributed service interactions, and the contextual data that connects them. Emerging technologies like OpenTelemetry, eBPF, and AI-driven anomaly detection have made this vision more achievable, but only if organizations ground their observability strategy in well-defined pillars. Here are the five foundational pillars of cross-platform observability that modern engineering teams should focus on for seamless platform performance ...

For all the attention AI receives in corporate slide decks and strategic roadmaps, many businesses are struggling to translate that ambition into something that holds up at scale. At least, that's the picture that emerged from a recent Forrester study commissioned by Tines ...

From smart factories and autonomous vehicles to real-time analytics and intelligent building systems, the demand for instant, local data processing is exploding. To meet these needs, organizations are leaning into edge computing. The promise? Faster performance, reduced latency and less strain on centralized infrastructure. But there's a catch: Not every network is ready to support edge deployments ...

Every digital customer interaction, every cloud deployment, and every AI model depends on the same foundation: the ability to see, understand, and act on data in real time ... Recent data from Splunk confirms that 74% of the business leaders believe observability is essential to monitoring critical business processes, and 66% feel it's key to understanding user journeys. Because while the unknown is inevitable, observability makes it manageable. Let's explore why ...

Organizations that perform regular audits and assessments of AI system performance and compliance are over three times more likely to achieve high GenAI value than organizations that do not, according to a survey by Gartner ...

Kubernetes has become the backbone of cloud infrastructure, but it's also one of its biggest cost drivers. Recent research shows that 98% of senior IT leaders say Kubernetes now drives cloud spend, yet 91% still can't optimize it effectively. After years of adoption, most organizations have moved past discovery. They know container sprawl, idle resources and reactive scaling inflate costs. What they don't know is how to fix it ...

Artificial intelligence is no longer a future investment. It's already embedded in how we work — whether through copilots in productivity apps, real-time transcription tools in meetings, or machine learning models fueling analytics and personalization. But while enterprise adoption accelerates, there's one critical area many leaders have yet to examine: Can your network actually support AI at the speed your users expect? ...

The more technology businesses invest in, the more potential attack surfaces they have that can be exploited. Without the right continuity plans in place, the disruptions caused by these attacks can bring operations to a standstill and cause irreparable damage to an organization. It's essential to take the time now to ensure your business has the right tools, processes, and recovery initiatives in place to weather any type of IT disaster that comes up. Here are some effective strategies you can follow to achieve this ...

Improving Application Performance with NVMe Storage - Part 1

The Rise of AI and ML Driving Parallel Computing Requirements
Zivan Ori

As computing technology and data algorithms have advanced over the years, the ways in which technology has been applied to real world challenges have grown more automated and autonomous. This has given rise to a completely new set of computing workloads for Machine Learning which drives Artificial Intelligence applications (aka AI / ML).

AI / ML can be applied across a broad spectrum of applications and industries. Financial analysis with real-time analytics is used for predicting investments and drives the FinTech industrys needs for high performance computing. Real-time image recognition is a key enabler for self-driving vehicles, while facial recognition is used by law enforcement across the globe. Manufacturing uses image recognition technology to spot defects in materials, organizations such as NOAA use satellite imagery to spot changes in weather, while social media platforms use image recognition to tag photos of friends and family.

What is common among these uses cases is the need for a high level of parallel computing power, coupled with a high-performance low latency architecture to enable parallel processing of data in real-time across the compute cluster. The "training" phase of machine learning is critical and can take an excessively long time, especially as the training data set grows exponentially to enable deep learning for AI.

With storage performance now recognized as a critical component of AI/ML application performance, the next step is to identify the ideal storage platform. Non-Volatile Memory Express (NVMe) based storage systems have gained traction as the storage media of choice to deliver the best throughput and latency. Shared NVMe storage systems unlock the performance of NVMe, and offer a strong alternative to using local NVMe SSDs inside of GPU nodes.

The Rise of GPUs for AI / ML

GPUs were originally created for high performance image creation, and are very efficient at manipulating computer graphics and image processing. Their highly parallel structure makes them much more efficient than general purpose CPUs for algorithms where the processing of large blocks is done in parallel. For this reason, GPUs have found strong adoption in the AI / ML use case as they allow for a high degree of parallel computing and current AI focused applications have been optimized to run on GPU based computing clusters.

With the powerful compute performance of GPUs, the bottleneck moves to other areas of the AI / ML architecture. For example, the volume of data required to feed machine learning requires massive parallel read access to shared files from the storage subsystem across all nodes in the GPU cluster. This creates a performance challenge that NVMe shared storage systems are ideally suited to address.

Shared NVMe Storage for High Performance Machine Learning (ML)

One of benefits of shared NVMe storage is the ability to create even deeper neural networks due to the inherent high performance of shared storage, opening the door for future models that cannot be achieved today with non-shared NVMe storage solutions.

Today, there are storage solutions that offer patented architectures built from the ground up to leverage NVMe. The key to performance and scalability is the separation of control and data path operations between the the storage controller software and the host-side agents. The storage controller software provides centralized control and management, while the agents manage data path operations with direct access to shared storage volumes.

While AI / ML workloads are run exclusively on the GPUs within the cluster, that doesn't mean that CPUs have been eliminated from the GPU clusters completely. The operating system and drivers still leverage the CPUs, but while the machine learning training is in progress, the CPU is relatively idle. This provides the perfect opportunity for an NVMe based storage architecture to leverage the idle CPU computing capacity for a high performance distributed storage approach.

With NVMe protocol supporting exponentially more connections per SSD, the storage agents use RDMA to give each GPU node a direct connection to the drives. This approach enables the agents to perform up to 90% of the data path operations between the GPU nodes and storage, reducing latency to be on par with local SSDs.

In this scenario, running the NVMe based storage agent on the idle CPU cores of the GPU nodes enables the NVMe based storage to deliver 10x better performance than competing all-flash solutions, while leveraging existing compute resources that are already installed and available to use.

Read Part 2: Local versus Shared Storage for Artificial Intelligence (AI) and Machine Learning (ML)

The Latest

People want to be doing more engaging work, yet their day often gets overrun by addressing urgent IT tickets. But thanks to advances in AI "vibe coding," where a user describes what they want in plain English and the AI turns it into working code, IT teams can automate ticketing workflows and offload much of that work. Password resets that used to take 5 minutes per request now get resolved automatically ...

Governments and social platforms face an escalating challenge: hyperrealistic synthetic media now spreads faster than legacy moderation systems can react. From pandemic-related conspiracies to manipulated election content, disinformation has moved beyond "false text" into the realm of convincing audiovisual deception ...

Traditional monitoring often stops at uptime and server health without any integrated insights. Cross-platform observability covers not just infrastructure telemetry but also client-side behavior, distributed service interactions, and the contextual data that connects them. Emerging technologies like OpenTelemetry, eBPF, and AI-driven anomaly detection have made this vision more achievable, but only if organizations ground their observability strategy in well-defined pillars. Here are the five foundational pillars of cross-platform observability that modern engineering teams should focus on for seamless platform performance ...

For all the attention AI receives in corporate slide decks and strategic roadmaps, many businesses are struggling to translate that ambition into something that holds up at scale. At least, that's the picture that emerged from a recent Forrester study commissioned by Tines ...

From smart factories and autonomous vehicles to real-time analytics and intelligent building systems, the demand for instant, local data processing is exploding. To meet these needs, organizations are leaning into edge computing. The promise? Faster performance, reduced latency and less strain on centralized infrastructure. But there's a catch: Not every network is ready to support edge deployments ...

Every digital customer interaction, every cloud deployment, and every AI model depends on the same foundation: the ability to see, understand, and act on data in real time ... Recent data from Splunk confirms that 74% of the business leaders believe observability is essential to monitoring critical business processes, and 66% feel it's key to understanding user journeys. Because while the unknown is inevitable, observability makes it manageable. Let's explore why ...

Organizations that perform regular audits and assessments of AI system performance and compliance are over three times more likely to achieve high GenAI value than organizations that do not, according to a survey by Gartner ...

Kubernetes has become the backbone of cloud infrastructure, but it's also one of its biggest cost drivers. Recent research shows that 98% of senior IT leaders say Kubernetes now drives cloud spend, yet 91% still can't optimize it effectively. After years of adoption, most organizations have moved past discovery. They know container sprawl, idle resources and reactive scaling inflate costs. What they don't know is how to fix it ...

Artificial intelligence is no longer a future investment. It's already embedded in how we work — whether through copilots in productivity apps, real-time transcription tools in meetings, or machine learning models fueling analytics and personalization. But while enterprise adoption accelerates, there's one critical area many leaders have yet to examine: Can your network actually support AI at the speed your users expect? ...

The more technology businesses invest in, the more potential attack surfaces they have that can be exploited. Without the right continuity plans in place, the disruptions caused by these attacks can bring operations to a standstill and cause irreparable damage to an organization. It's essential to take the time now to ensure your business has the right tools, processes, and recovery initiatives in place to weather any type of IT disaster that comes up. Here are some effective strategies you can follow to achieve this ...