Improving Application Performance with NVMe Storage - Part 1
The Rise of AI and ML Driving Parallel Computing Requirements
April 29, 2019

Zivan Ori
E8 Storage

Share this

As computing technology and data algorithms have advanced over the years, the ways in which technology has been applied to real world challenges have grown more automated and autonomous. This has given rise to a completely new set of computing workloads for Machine Learning which drives Artificial Intelligence applications (aka AI / ML).

AI / ML can be applied across a broad spectrum of applications and industries. Financial analysis with real-time analytics is used for predicting investments and drives the FinTech industrys needs for high performance computing. Real-time image recognition is a key enabler for self-driving vehicles, while facial recognition is used by law enforcement across the globe. Manufacturing uses image recognition technology to spot defects in materials, organizations such as NOAA use satellite imagery to spot changes in weather, while social media platforms use image recognition to tag photos of friends and family.

What is common among these uses cases is the need for a high level of parallel computing power, coupled with a high-performance low latency architecture to enable parallel processing of data in real-time across the compute cluster. The "training" phase of machine learning is critical and can take an excessively long time, especially as the training data set grows exponentially to enable deep learning for AI.

With storage performance now recognized as a critical component of AI/ML application performance, the next step is to identify the ideal storage platform. Non-Volatile Memory Express (NVMe) based storage systems have gained traction as the storage media of choice to deliver the best throughput and latency. Shared NVMe storage systems unlock the performance of NVMe, and offer a strong alternative to using local NVMe SSDs inside of GPU nodes.

The Rise of GPUs for AI / ML

GPUs were originally created for high performance image creation, and are very efficient at manipulating computer graphics and image processing. Their highly parallel structure makes them much more efficient than general purpose CPUs for algorithms where the processing of large blocks is done in parallel. For this reason, GPUs have found strong adoption in the AI / ML use case as they allow for a high degree of parallel computing and current AI focused applications have been optimized to run on GPU based computing clusters.

With the powerful compute performance of GPUs, the bottleneck moves to other areas of the AI / ML architecture. For example, the volume of data required to feed machine learning requires massive parallel read access to shared files from the storage subsystem across all nodes in the GPU cluster. This creates a performance challenge that NVMe shared storage systems are ideally suited to address.

Shared NVMe Storage for High Performance Machine Learning (ML)

One of benefits of shared NVMe storage is the ability to create even deeper neural networks due to the inherent high performance of shared storage, opening the door for future models that cannot be achieved today with non-shared NVMe storage solutions.

Today, there are storage solutions that offer patented architectures built from the ground up to leverage NVMe. The key to performance and scalability is the separation of control and data path operations between the the storage controller software and the host-side agents. The storage controller software provides centralized control and management, while the agents manage data path operations with direct access to shared storage volumes.

While AI / ML workloads are run exclusively on the GPUs within the cluster, that doesn't mean that CPUs have been eliminated from the GPU clusters completely. The operating system and drivers still leverage the CPUs, but while the machine learning training is in progress, the CPU is relatively idle. This provides the perfect opportunity for an NVMe based storage architecture to leverage the idle CPU computing capacity for a high performance distributed storage approach.

With NVMe protocol supporting exponentially more connections per SSD, the storage agents use RDMA to give each GPU node a direct connection to the drives. This approach enables the agents to perform up to 90% of the data path operations between the GPU nodes and storage, reducing latency to be on par with local SSDs.

In this scenario, running the NVMe based storage agent on the idle CPU cores of the GPU nodes enables the NVMe based storage to deliver 10x better performance than competing all-flash solutions, while leveraging existing compute resources that are already installed and available to use.

Read Part 2: Local versus Shared Storage for Artificial Intelligence (AI) and Machine Learning (ML)

Zivan Ori is CEO and Co-Founder of E8 Storage
Share this

The Latest

July 18, 2019

Organizations that are working with artificial intelligence (AI) or machine learning (ML) have, on average, four AI/ML projects in place, according to a recent survey by Gartner, Inc. Of all respondents, 59% said they have AI deployed today ...

July 17, 2019

The 11th anniversary of the Apple App Store frames a momentous time period in how we interact with each other and the services upon which we have come to rely. Even so, we continue to have our in-app mobile experiences marred by poor performance and instability. Apple has done little to help, and other tools provide little to no visibility and benchmarks on which to prioritize our efforts outside of crashes ...

July 16, 2019

Confidence in artificial intelligence (AI) and its ability to enhance network operations is high, but only if the issue of bias is tackled. Service providers (68%) are most concerned about the bias impact of "bad or incomplete data sets," since effective AI requires clean, high quality, unbiased data, according to a new survey of communication service providers ...

July 15, 2019

Every internet connected network needs a visibility platform for traffic monitoring, information security and infrastructure security. To accomplish this, most enterprise networks utilize from four to seven specialized tools on network links in order to monitor, capture and analyze traffic. Connecting tools to live links with TAPs allow network managers to safely see, analyze and protect traffic without compromising network reliability. However, like most networking equipment it's critical that installation and configuration are done properly ...

July 11, 2019

The Democratic presidential debates are likely to have many people switching back-and-forth between live streams over the coming months. This is going to be especially true in the days before and after each debate, which will mean many office networks are likely to see a greater share of their total capacity going to streaming news services than ever before ...

July 10, 2019

Monitoring of heating, ventilation and air conditioning (HVAC) infrastructures has become a key concern over the last several years. Modern versions of these systems need continual monitoring to stay energy efficient and deliver satisfactory comfort to building occupants. This is because there are a large number of environmental sensors and motorized control systems within HVAC systems. Proper monitoring helps maintain a consistent temperature to reduce energy and maintenance costs for this type of infrastructure ...

July 09, 2019

Shoppers won’t wait for retailers, according to a new research report titled, 2019 Retailer Website Performance Evaluation: Are Retail Websites Meeting Shopper Expectations? from Yottaa ...

June 27, 2019

Customer satisfaction and retention were the top concerns for a majority (58%) of IT leaders when suffering downtime or outages, according to a survey of top IT leaders conducted by AIOps Exchange. The effect of service interruptions on customers outweighed other concerns such as loss of revenue, brand reputation, negative press coverage, or the impact on IT Ops teams.

June 26, 2019

It is inevitable that employee productivity and the quality of customer experiences suffer as a consequence of the poor performance of O365. The quick detection and rapid resolution of problems associated with O365 are top of mind for any organization to keep its business humming ...

June 25, 2019

Employees at British businesses rate computer downtime as the most significant irritant at their current workplace (41 percent) when asked to pick their top three ...