Improving Application Performance with NVMe Storage - Part 1
The Rise of AI and ML Driving Parallel Computing Requirements
April 29, 2019

Zivan Ori
E8 Storage

Share this

As computing technology and data algorithms have advanced over the years, the ways in which technology has been applied to real world challenges have grown more automated and autonomous. This has given rise to a completely new set of computing workloads for Machine Learning which drives Artificial Intelligence applications (aka AI / ML).

AI / ML can be applied across a broad spectrum of applications and industries. Financial analysis with real-time analytics is used for predicting investments and drives the FinTech industrys needs for high performance computing. Real-time image recognition is a key enabler for self-driving vehicles, while facial recognition is used by law enforcement across the globe. Manufacturing uses image recognition technology to spot defects in materials, organizations such as NOAA use satellite imagery to spot changes in weather, while social media platforms use image recognition to tag photos of friends and family.

What is common among these uses cases is the need for a high level of parallel computing power, coupled with a high-performance low latency architecture to enable parallel processing of data in real-time across the compute cluster. The "training" phase of machine learning is critical and can take an excessively long time, especially as the training data set grows exponentially to enable deep learning for AI.

With storage performance now recognized as a critical component of AI/ML application performance, the next step is to identify the ideal storage platform. Non-Volatile Memory Express (NVMe) based storage systems have gained traction as the storage media of choice to deliver the best throughput and latency. Shared NVMe storage systems unlock the performance of NVMe, and offer a strong alternative to using local NVMe SSDs inside of GPU nodes.

The Rise of GPUs for AI / ML

GPUs were originally created for high performance image creation, and are very efficient at manipulating computer graphics and image processing. Their highly parallel structure makes them much more efficient than general purpose CPUs for algorithms where the processing of large blocks is done in parallel. For this reason, GPUs have found strong adoption in the AI / ML use case as they allow for a high degree of parallel computing and current AI focused applications have been optimized to run on GPU based computing clusters.

With the powerful compute performance of GPUs, the bottleneck moves to other areas of the AI / ML architecture. For example, the volume of data required to feed machine learning requires massive parallel read access to shared files from the storage subsystem across all nodes in the GPU cluster. This creates a performance challenge that NVMe shared storage systems are ideally suited to address.

Shared NVMe Storage for High Performance Machine Learning (ML)

One of benefits of shared NVMe storage is the ability to create even deeper neural networks due to the inherent high performance of shared storage, opening the door for future models that cannot be achieved today with non-shared NVMe storage solutions.

Today, there are storage solutions that offer patented architectures built from the ground up to leverage NVMe. The key to performance and scalability is the separation of control and data path operations between the the storage controller software and the host-side agents. The storage controller software provides centralized control and management, while the agents manage data path operations with direct access to shared storage volumes.

While AI / ML workloads are run exclusively on the GPUs within the cluster, that doesn't mean that CPUs have been eliminated from the GPU clusters completely. The operating system and drivers still leverage the CPUs, but while the machine learning training is in progress, the CPU is relatively idle. This provides the perfect opportunity for an NVMe based storage architecture to leverage the idle CPU computing capacity for a high performance distributed storage approach.

With NVMe protocol supporting exponentially more connections per SSD, the storage agents use RDMA to give each GPU node a direct connection to the drives. This approach enables the agents to perform up to 90% of the data path operations between the GPU nodes and storage, reducing latency to be on par with local SSDs.

In this scenario, running the NVMe based storage agent on the idle CPU cores of the GPU nodes enables the NVMe based storage to deliver 10x better performance than competing all-flash solutions, while leveraging existing compute resources that are already installed and available to use.

Read Part 2: Local versus Shared Storage for Artificial Intelligence (AI) and Machine Learning (ML)

Zivan Ori is CEO and Co-Founder of E8 Storage
Share this

The Latest

October 21, 2021

Scaling DevOps and SRE practices is critical to accelerating the release of high-quality digital services. However, siloed teams, manual approaches, and increasingly complex tooling slow innovation and make teams more reactive than proactive, impeding their ability to drive value for the business, according to a new report from Dynatrace, Deep Cloud Observability and Advanced AIOps are Key to Scaling DevOps Practices ...

October 20, 2021

Over three quarters (79%) of database professionals are now using either a paid-for or in-house monitoring tool, according to a new survey from Redgate Software ...

October 19, 2021

Gartner announced the top strategic technology trends that organizations need to explore in 2022. With CEOs and Boards striving to find growth through direct digital connections with customers, CIOs' priorities must reflect the same business imperatives, which run through each of Gartner's top strategic tech trends for 2022 ...

October 18, 2021

Distributed tracing has been growing in popularity as a primary tool for investigating performance issues in microservices systems. Our recent DevOps Pulse survey shows a 38% increase year-over-year in organizations' tracing use. Furthermore, 64% of those respondents who are not yet using tracing indicated plans to adopt it in the next two years ...

October 14, 2021

Businesses are embracing artificial intelligence (AI) technologies to improve network performance and security, according to a new State of AIOps Study, conducted by ZK Research and Masergy ...

October 13, 2021

What may have appeared to be a stopgap solution in the spring of 2020 is now clearly our new workplace reality: It's impossible to walk back so many of the developments in workflow we've seen since then. The question is no longer when we'll all get back to the office, but how the companies that are lagging in their technological ability to facilitate remote work can catch up ...

October 12, 2021

The pandemic accelerated organizations' journey to the cloud to enable agile, on-demand, flexible access to resources, helping them align with a digital business's dynamic needs. We heard from many of our customers at the start of lockdown last year, saying they had to shift to a remote work environment, seemingly overnight, and this effort was heavily cloud-reliant. However, blindly forging ahead can backfire ...

October 07, 2021

SmartBear recently released the results of its 2021 State of Software Quality | Testing survey. I doubt you'll be surprised to hear that a "lack of time" was reported as the number one challenge to doing more testing, especially as release frequencies continue to increase. However, it was disheartening to see that a lack of time was also the number one response when we asked people to identify the biggest blocker to professional development ...

October 06, 2021

The role of the CIO is evolving with an increased focus on unlocking customer connections through service innovation, according to the 2021 Global CIO Survey. The study reveals the shift in the role of the CIO with the majority of CIO respondents stating innovation, operational efficiency, and customer experience as their top priorities ...

October 05, 2021

The perception of IT support has dramatically improved thanks to the successful response of service desks to the pandemic, lockdowns and working from home, according to new research from the Service Desk Institute (SDI), sponsored by Sunrise Software ...