Improving Application Performance with NVMe Storage - Part 3
NVMe Storage Use Cases and Summary: Benefits of NVMe storage for AI/ML
May 01, 2019

Zivan Ori
E8 Storage

Share this

Start with Part 1: The Rise of AI and ML Driving Parallel Computing Requirements

Start with Part 2: Local versus Shared Storage for Artificial Intelligence (AI) and Machine Learning (ML)

NVMe Storage Use Cases

NVMe storage's strong performance, combined with the capacity and data availability benefits of shared NVMe storage over local SSD, makes it a strong solution for AI / ML infrastructures of any size. There are several AI / ML focused use cases to highlight.

■ Financial Analytics – Financial services and financial technology (FinTech) are increasingly turning to automation and artificial intelligence to fuel their decision making processes for investments. Using a mix of historical data and financial modeling, one platform can provide the horsepower required for predicting future investment strategies for their financial customers.

■ Image Recognition in Manufacturing – Manufacturing has long used automation in their production lines to increase the output capacity of their production systems, scaling from hundreds of units to thousands or even millions of units per hour. The financial impact of a quality issue on the production line can be devastating if not caught in a timely manner. Real-time image recognition of photos of manufactured parts is essential to determining whether a part meets the quality standards required, as well as capturing systematic quality issues in real-time.

■ Car Services – Ride sharing apps have given rise to a new paradigm in public transit, allowing users and drivers to connect quickly and easily as needed. Ride sharing companies use AI / ML for traffic modeling to position drivers where they are most needed based on both past and current ride sharing requests. This increases the drivers' potential revenue by reducing drive times as well as increases customer satisfaction through reduced wait times, both of which improve the revenue potential for the ride sharing company.

Beyond AI / ML, one vendor also provides more generalized computing services for their customers. They provide storage capacity for cloud services, using OpenStack and Kubernetes in conjunction with NVMe storage for high performance storage. In addition, they also leverage NVMe storage for big data analytics, using spark applications to perform multiple types of data analytics tasks, such as SQL, data mining and more.

Summary: Benefits of NVMe storage for AI/ML

NVMe storage is an ideal solution for countless AI / ML workloads, especially machine learning for multiple applications. With NVMe storage, you can:

■ Create and manage larger shared data-sets for training – By separating out storage capacity from the compute nodes, data-sets for machine learning training can scale up to 1PB. As the data-set grows and more NVMe storage is brought online, performance grows as well, rather than being limited by legacy storage controller bottlenecks.

■ Overcome the capacity limitations of local SSDs in GPU nodes – With limited space for SSD media, GPU nodes have limited capacity to manage larger datasets. With NVMe storage, NVMe volumes can be dynamically provisioned over high performance Ethernet or InfiniBand networks.

■ Accelerate epoch time of machine learning by as much as 10x – By leveraging high performance NVMe-oF, NVMe storage eliminates the latency bottlenecks of older storage protocols and unleashes the parallelism inherent to the NVMe protocol. Every GPU node has direct, parallel access to the media at the lowest possible latency.

■ Improve the utilization of GPUs – Having GPUs rest idle due to slow access to data for processing is costly. By offloading storage access to the idle CPUs, and delivering storage performance at the speed of local SSD, NVMe storage ensures that the GPU-nodes are kept busy with fast access to data.

Zivan Ori is CEO and Co-Founder of E8 Storage
Share this

The Latest

February 06, 2023

This year 2023, at a macro level we are moving from an inflation economy to a recession and uncertain economy and the general theme is certainly going to be "Doing More with Less" and "Customer Experience is the King." Let us examine what trends and technologies will play a lending hand in these circumstances ...

February 02, 2023

As organizations continue to adapt to a post-pandemic surge in cloud-based productivity, the 2023 State of the Network report from Viavi Solutions details how end-user awareness remains critical and explores the benefits — and challenges — of cloud and off-premises network modernization initiatives ...

February 01, 2023

In the network engineering world, many teams have yet to realize the immense benefit real-time collaboration tools can bring to a successful automation strategy. By integrating a collaboration platform into a network automation strategy — and taking advantage of being able to share responses, files, videos and even links to applications and device statuses — network teams can leverage these tools to manage, monitor and update their networks in real time, and improve the ways in which they manage their networks ...

January 31, 2023

A recent study revealed only an alarming 5% of IT decision makers who report having complete visibility into employee adoption and usage of company-issued applications, demonstrating they are often unknowingly careless when it comes to software investments that can ultimately be costly in terms of time and resources ...

January 30, 2023

Everyone has visibility into their multi-cloud networking environment, but only some are happy with what they see. Unfortunately, this continues a trend. According to EMA's latest research, most network teams have some end-to-end visibility across their multi-cloud networks. Still, only 23.6% are fully satisfied with their multi-cloud network monitoring and troubleshooting capabilities ...

January 26, 2023

As enterprises work to implement or improve their observability practices, tool sprawl is a very real phenomenon ... Tool sprawl can and does happen all across the organization. In this post, though, we'll focus specifically on how and why observability efforts often result in tool sprawl, some of the possible negative consequences of that sprawl, and we'll offer some advice on how to reduce or even avoid sprawl ...

January 25, 2023

As companies generate more data across their network footprints, they need network observability tools to help find meaning in that data for better decision-making and problem solving. It seems many companies believe that adding more tools leads to better and faster insights ... And yet, observability tools aren't meeting many companies' needs. In fact, adding more tools introduces new challenges ...

January 24, 2023

Driven by the need to create scalable, faster, and more agile systems, businesses are adopting cloud native approaches. But cloud native environments also come with an explosion of data and complexity that makes it harder for businesses to detect and remediate issues before everything comes to a screeching halt. Observability, if done right, can make it easier to mitigate these challenges and remediate incidents before they become major customer-impacting problems ...

January 23, 2023

The spiraling cost of energy is forcing public cloud providers to raise their prices significantly. A recent report by Canalys predicted that public cloud prices will jump by around 20% in the US and more than 30% in Europe in 2023. These steep price increases will test the conventional wisdom that moving to the cloud is a cheap computing alternative ...

January 19, 2023

Despite strong interest over the past decade, the actual investment in DX has been recent. While 100% of enterprises are now engaged with DX in some way, most (77%) have begun their DX journey within the past two years. And most are early stage, with a fourth (24%) at the discussion stage and half (49%) currently transforming. Only 27% say they have finished their DX efforts ...