Skip to main content

Run.ai Supports Hybrid Cloud and Multi-Cloud AI Infrastructure

Run:ai announced that the Atlas Platform supports hybrid cloud and multi-cloud AI Infrastructure.

Run:ai's centralized monitoring and control panel provides a unified and consistent user experience to manage resources running on different locations including on-prem and in the cloud. With Run:ai, organizations can easily take advantage of adopting a multi-cloud strategy avoiding unplanned downtime, boosting compute availability, and controlling costs.

"Using several cloud service providers or a combination of on-prem and cloud to manage infrastructure is the goal for most organizations but the challenges can be daunting", said Ronen Dar, co-founder and CTO of Run:ai. "Companies can underestimate the time and effort it takes to abstract infrastructure and migrate workloads to different clouds. Provider lock-in happens early and it can take months to train IT and DevOps teams on every environment. The lack of centralized monitoring also means that users must work with different tools to manage multiple clusters across multiple clouds - which differing price models further complicate."

Run:ai's Atlas now provides a unified user experience through full abstraction so researchers can keep using each cloud provider's managed Kubernetes platform and leverage the best of every CSP's offering. Researchers can keep using their framework of choice and favorite development tools. Run:ai's Control Plane is a single pane of glass, with centralized & multi-tenant management of resources, utilization, health and performance across any aspect of the AI pipeline, no matter where the workloads are run. Run:ai also removes GPU configuration limitations, allowing teams to split GPUs into fractions for smaller inference workloads.

"With Run:ai, an AI healthcare company training models, for example, can keep their sensitive patient data on-prem, and once the model is trained, they can seamlessly move to the cloud to deploy to a customer." added Dar "Run:ai helps companies transition easily to a hybrid-cloud strategy and get the best of both worlds."

The Latest

Regardless of their scale, business decisions often take time, effort, and a lot of back-and-forth discussion to reach any sort of actionable conclusion ... Any means of streamlining this process and getting from complex problems to optimal solutions more efficiently and reliably is key. How can organizations optimize their decision-making to save time and reduce excess effort from those involved? ...

As enterprises accelerate their cloud adoption strategies, CIOs are routinely exceeding their cloud budgets — a concern that's about to face additional pressure from an unexpected direction: uncertainty over semiconductor tariffs. The CIO Cloud Trends Survey & Report from Azul reveals the extent continued cloud investment despite cost overruns, and how organizations are attempting to bring spending under control ...

Image
Azul

According to Auvik's 2025 IT Trends Report, 60% of IT professionals feel at least moderately burned out on the job, with 43% stating that their workload is contributing to work stress. At the same time, many IT professionals are naming AI and machine learning as key areas they'd most like to upskill ...

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...

Run.ai Supports Hybrid Cloud and Multi-Cloud AI Infrastructure

Run:ai announced that the Atlas Platform supports hybrid cloud and multi-cloud AI Infrastructure.

Run:ai's centralized monitoring and control panel provides a unified and consistent user experience to manage resources running on different locations including on-prem and in the cloud. With Run:ai, organizations can easily take advantage of adopting a multi-cloud strategy avoiding unplanned downtime, boosting compute availability, and controlling costs.

"Using several cloud service providers or a combination of on-prem and cloud to manage infrastructure is the goal for most organizations but the challenges can be daunting", said Ronen Dar, co-founder and CTO of Run:ai. "Companies can underestimate the time and effort it takes to abstract infrastructure and migrate workloads to different clouds. Provider lock-in happens early and it can take months to train IT and DevOps teams on every environment. The lack of centralized monitoring also means that users must work with different tools to manage multiple clusters across multiple clouds - which differing price models further complicate."

Run:ai's Atlas now provides a unified user experience through full abstraction so researchers can keep using each cloud provider's managed Kubernetes platform and leverage the best of every CSP's offering. Researchers can keep using their framework of choice and favorite development tools. Run:ai's Control Plane is a single pane of glass, with centralized & multi-tenant management of resources, utilization, health and performance across any aspect of the AI pipeline, no matter where the workloads are run. Run:ai also removes GPU configuration limitations, allowing teams to split GPUs into fractions for smaller inference workloads.

"With Run:ai, an AI healthcare company training models, for example, can keep their sensitive patient data on-prem, and once the model is trained, they can seamlessly move to the cloud to deploy to a customer." added Dar "Run:ai helps companies transition easily to a hybrid-cloud strategy and get the best of both worlds."

The Latest

Regardless of their scale, business decisions often take time, effort, and a lot of back-and-forth discussion to reach any sort of actionable conclusion ... Any means of streamlining this process and getting from complex problems to optimal solutions more efficiently and reliably is key. How can organizations optimize their decision-making to save time and reduce excess effort from those involved? ...

As enterprises accelerate their cloud adoption strategies, CIOs are routinely exceeding their cloud budgets — a concern that's about to face additional pressure from an unexpected direction: uncertainty over semiconductor tariffs. The CIO Cloud Trends Survey & Report from Azul reveals the extent continued cloud investment despite cost overruns, and how organizations are attempting to bring spending under control ...

Image
Azul

According to Auvik's 2025 IT Trends Report, 60% of IT professionals feel at least moderately burned out on the job, with 43% stating that their workload is contributing to work stress. At the same time, many IT professionals are naming AI and machine learning as key areas they'd most like to upskill ...

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...