Undo Releases Live Recorder 5.0
June 26, 2019
Share this

Undo released Live Recorder 5.0 - a product to solve the costly problem of reproducing and debugging non-deterministic defects in multi-process systems.

This enables software developers to greatly improve quality for their customers and deliver at velocity.

"Over 60 percent of enterprises are adopting multi-process architectures for business-critical systems like networking, transaction processing and security, and when defects occur it can wreak havoc on development schedules and customer satisfaction," said Undo CTO Greg Law. "Identifying exactly how certain components interacted with each other, or with shared resources, at a certain historical moment is generally not possible, but with Undo's advanced Live Recorder 5.0, developers are able to eliminate all of that time-absorbing work by revealing the exact coding process that led to that defect."

Live Recorder 5.0 provides complete insight into what's going on within each process, line by line of code -- memory, threads, program flow, service calls, and more. To make this possible, Live Recorder 5.0 record & replay and time-travel debugging capabilities have been enhanced with:

- Multi-Process Correlation (MPC) of Shared Memory - Records the exact order in which processes altered shared memory variables. You can even zero-in on specific variables and skip backward to the last line of code--in any process--to have altered the variable.

- Thread Fuzzing - Exposes potential defects by randomizing thread execution to help reveal race conditions, crashes, and other multi-threading defects.

- Microservices Support - Live Recorder 5.0 can record and replay the execution of individual Kubernetes and Docker containers to help resolve defects faster in microservices environments.

Undo's professional services team is available for pre-testing, performance optimization and ongoing training as needed. Everything can be done remotely, which increases efficiency and reduces response time for customer service inquiries.

Share this

The Latest

October 17, 2019

As the data generated by organizations grows, APM tools are now required to do a lot more than basic monitoring of metrics. Modern data is often raw and unstructured and requires more advanced methods of analysis. The tools must help dig deep into this data for both forensic analysis and predictive analysis. To extract more accurate and cheaper insights, modern APM tools use Big Data techniques to store, access, and analyze the multi-dimensional data ...

October 16, 2019

Modern enterprises are generating data at an unprecedented rate but aren't taking advantage of all the data available to them in order to drive real-time, actionable insights. According to a recent study commissioned by Actian, more than half of enterprises today are unable to efficiently manage nor effectively use data to drive decision-making ...

October 15, 2019

According to a study by Forrester Research, an enhanced UX design can increase the conversion rate by 400%. If UX has become the ultimate arbiter in determining the success or failure of a product or service, let us first understand what UX is all about ...

October 10, 2019

The requirements of an APM tool are now much more complex than they've ever been. Not only do they need to trace a user transaction across numerous microservices on the same system, but they also need to happen pretty fast ...

October 09, 2019

Performance monitoring is an old problem. As technology has advanced, we've had to evolve how we monitor applications. Initially, performance monitoring largely involved sending ICMP messages to start troubleshooting a down or slow application. Applications have gotten much more complex, so this is no longer enough. Now we need to know not just whether an application is broken, but why it broke. So APM has had to evolve over the years for us to get there. But how did this evolution take place, and what happens next? Let's find out ...

October 08, 2019

There are some IT organizations that are using DevOps methodology but are wary of getting bogged down in ITSM procedures. But without at least some ITSM controls in place, organizations lose their focus on systematic customer engagement, making it harder for them to scale ...

October 07, 2019
OK, I admit it. "Service modeling" is an awkward term, especially when you're trying to frame three rather controversial acronyms in the same overall place: CMDB, CMS and DDM. Nevertheless, that's exactly what we did in EMA's most recent research: <span style="font-style: italic;">Service Modeling in the Age of Cloud and Containers</span>. The goal was to establish a more holistic context for looking at the synergies and differences across all these areas ...
October 03, 2019

If you have deployed a Java application in production, you've probably encountered a situation where the application suddenly starts to take up a large amount of CPU. When this happens, application response becomes sluggish and users begin to complain about slow response. Often the solution to this problem is to restart the application and, lo and behold, the problem goes away — only to reappear a few days later. A key question then is: how to troubleshoot high CPU usage of a Java application? ...

October 02, 2019

Operations are no longer tethered tightly to a main office, as the headquarters-centric model has been retired in favor of a more decentralized enterprise structure. Rather than focus the business around a single location, enterprises are now comprised of a web of remote offices and individuals, where network connectivity has broken down the geographic barriers that in the past limited the availability of talent and resources. Key to the success of the decentralized enterprise model is a new generation of collaboration and communication tools ...

October 01, 2019

To better understand the AI maturity of businesses, Dotscience conducted a survey of 500 industry professionals. Research findings indicate that although enterprises are dedicating significant time and resources towards their AI deployments, many data science and ML teams don't have the adequate tools needed to properly collaborate on, build and deploy AI models efficiently ...