3 Reasons Most Enterprises Aren't Ready For Advanced Analytics Strategies
May 20, 2016

Dan Ortega
Blazent

Share this

"Data, data everywhere, and not a drop to drink." All businesses are fully aware of how much data they're swimming through on a daily basis. And because its buzzy and trendy, most of these businesses are looking to do more with their data, striving to implement cool sounding technologies like machine learning and predictive analytics.

How many, exactly? 41% of executives in a recent 451 Research survey of advanced analytics are looking to begin implementing applications such as Machine Learning or Predictive Modeling in the next 12 months, and an additional 14% plan to do so in the next 24.

And why shouldn't they? These sophisticated programs are highly efficient and represent the future of many different verticals supported by the technology industry.

Yet as enterprises and their leadership see these initiatives on the horizon, a startling number are overlooking a crucial factor that could make or break the success of these investments: the quality of their own data. With some enterprises curating up to 200 disparate data sources, ensuring data quality is no easy task. But getting it right can literally make the difference between a very public crash 'n' burn, or being the standard that everyone tries to emulate.

Here are three reasons why the average enterprise isn't properly prepared for an advanced analytics strategy.

Reason 1: Medieval Methods for Managing Data Quality

According to the survey, 37% of enterprises employ a manual data cleansing process. Given current data volumes, manually cleaning something isn't so 1990s, it's actually more like 1500s. Many of these enterprises are starting to look towards algorithmic automation – but how can they successfully automate advanced processes when their back-end data quality checks remain manual?

44.5% of respondents are in a reactive mode, meaning they only deal with their data quality when it becomes a problem … that they notice (and by the way, their customers noticed way before they did).

The majority of respondents (65%) acknowledge up to 50% of business value can be lost to poor data quality – think that number is going to decrease when the number of initiatives that rely on clean data increases?

Reason 2: Businesses Don't Know The Exact Quality of Their Data

Because of these current Data Quality Management "strategies", IT departments and C-suite executives have a lack of faith in the actual quality of their data.

Over half (57%) of respondents in this survey were "somewhat confident", "unaware", or "less than confident" in the state of their data. Not exactly a resounding endorsement.

This feeling is compounded by the dependency on manual effort to drive remediation in many enterprises' data quality process. Manual entry was the leading cause of poor data quality, also coming in at 57%.

To be fair, you can't blame employees for making mistakes in data entry or processing, but you can blame their management for not providing them with the right tools to handle the volume of data they face every day.

Reason 3: The Stream of Data Today is About to Become a Tsunami

If proper preparations aren't undertaken right now with the relatively manageable amount of data that currently exists, it will be not just be harder, it will be impossible to get a handle on it at the rate that data sources and volumes will continue to expand over the next 3-5 years.

95% of survey respondents acknowledge they expect data to increase (the other 5% presumably in businesses that won't be around in five years).

70% expect data volumes to grow by 70%, while nearly all of the remaining 30% expect it to grow by more than 75%. Chances are, all of them are underestimating what's headed in their direction.

The problems faced by the enterprise today are significant, but can be managed if IT executives deal with the data quality issue now. Tools and technologies are available to ensure viable data quality, which becomes the foundation for growth and value-add, but the choice to act now or quickly get buried is in our collective face, and requires immediate action.

Dan Ortega is VP of Marketing at Blazent.

Share this

The Latest

May 29, 2024

Nearly half (44%) of IT leaders surveyed believe their organizations are fully set up to realize the benefits of AI, according to Architect an AI Advantage, a report commissioned by Hewlett Packard Enterprise (HPE). The report reveals critical gaps in their strategies ...

May 28, 2024
When it comes to ensuring the effectiveness of a software application, it's paramount to ensure that the application can handle varying degrees of demand. Performance testing is a crucial aspect of the software development cycle ...
May 23, 2024

Hybrid cloud architecture is breaking the backs of network engineering and operations teams. These teams are more successful when their companies go all-in with the cloud or stay out of it entirely. When companies maintain hybrid infrastructure, with applications and data residing across data centers and public cloud services, the network team struggles. This insight emerged in the newly published 2024 edition of Enterprise Management Associates' (EMA) Network Management Megatrends research ...

May 22, 2024

As IT practitioners, we often find ourselves fighting fires rather than proactively getting ahead ... Many spend countless hours managing several tools that give them different, fractured views of their own work — which isn't an effective use of time. Balancing daily technical tasks with long-term company goals requires a three-step approach. I'll share these steps and tips for others to do the same ...

May 21, 2024

IT service outages are more than a minor inconvenience. They can cost businesses millions while simultaneously leading to customer dissatisfaction and reputational damage. Moreover, the constant pressure of dealing with fire drills and escalations day and night can take a heavy toll on ITOps teams, leading to increased stress, human error, and burnout ...

May 20, 2024

Amid economic disruption, fintech competition, and other headwinds in recent years, banks have had to quickly adjust to the demands of the market. This adaptation is often reliant on having the right technology infrastructure in place ...

May 17, 2024

In MEAN TIME TO INSIGHT Episode 6, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses network automation ...

May 16, 2024

In the ever-evolving landscape of software development and infrastructure management, observability stands as a crucial pillar. Among its fundamental components lies log collection ... However, traditional methods of log collection have faced challenges, especially in high-volume and dynamic environments. Enter eBPF, a groundbreaking technology ...

May 15, 2024

Businesses are dazzled by the promise of generative AI, as it touts the capability to increase productivity and efficiency, cut costs, and provide competitive advantages. With more and more generative AI options available today, businesses are now investigating how to convert the AI promise into profit. One way businesses are looking to do this is by using AI to improve personalized customer engagement ...

May 14, 2024

In the fast-evolving realm of cloud computing, where innovation collides with fiscal responsibility, the Flexera 2024 State of the Cloud Report illuminates the challenges and triumphs shaping the digital landscape ... At the forefront of this year's findings is the resounding chorus of organizations grappling with cloud costs ...