Achieving Optimum Application Performance with Intelligent Availability
May 31, 2018

Don Boxley
DH2i

Share this

The thought of a dramatic decrease in application performance, let alone a system or application outage, sends shivers down even the hardiest IT professional's spine. That's because they know that in today's pace of business slow response time (or G-d forbid, just a few minutes of downtime) can equate to business loss both immediately and into the future, as well as potentially painful legal and/or regulations compliance consequences. There is no way around it. Availability has cemented itself as one of the most essential elements of any successful data center. However today, what many organizations are beginning to realize — sometimes the hard way — is that traditional methodologies and technologies for high availability (HA) have limits.

What's needed instead is a new approach that enables the dynamic transfer of workloads in IT environments based on optimizing the particular job at hand. Accomplishing this objective necessitates an inherent intelligence, flexibility, lack of downtime, and cost-effective methodology. What's required is intelligent availability, which builds upon some of the basic principles of high availability to provide the previously mentioned advantages — and more.

Intelligent availability is the future of availability and arguably the most critical component in the blueprint for creating business value through digital transformation.

Traditional High Availability

Historically, high availability (HA) has been defined quite simply as the continuous operation of applications and system components. Traditionally, this objective was accomplished in a variety of ways, accompanied by an assortment of drawbacks. One of the most common involves failovers, in which data and operations are transferred to those of a secondary system for scheduled downtime or unplanned failures.

Clustering methodologies are often leveraged with this approach to make resources between systems — including databases, servers, processors and others — available to one another. Clustering is applicable to VMs and physical servers and can help enable resilience for OS, host, and guest failures. Failovers involve a degree of redundancy, which entails maintaining HA by involving backups of system components. Redundant networking and storage options may be leveraged with VMs to encompass system components or data copies.

One of the most serious problems with many of these approaches is cost, especially as there are several instances in which HA is unnecessary. These pertain to the actual use and importance of servers, as well as additional factors pertaining to what virtualization techniques are used. Low priority servers that don't affect end users — such as those for testing — don't need HA, nor do those with recovery time objectives (RTO) significantly greater than their restore times.

Certain HA solutions, such as some of the more comprehensive hypervisor-based platforms, are indiscriminate in this regard. Therefore, users may end up paying for HA for components that don't need them. Also, traditional high availability approaches involve constant testing that can drain human and financial resources. Even worse, neglecting this duty can result in unplanned downtime. Also, arbitrarily implementing redundancy for system components broadens organization's data landscapes, resulting in more copies and potential weaknesses for security and data governance.

The Future: Digital Transformation

Many of these virtualization measures for HA are losing relevance because of digital transformation. To truly transform the way your organization conducts business with digitization technologies, you must deploy them strategically. Traditional HA methods simply do not allow for the fine-grained flexibility needed to optimize business value from digitization. Digital transformation means accounting for the varied computing environments of Linux and Windows operating systems alongside containers. It means integrating an assortment of legacy systems with newer ones specifically designed to handle the flood of big data and modern transactions systems.

Perhaps most importantly, it means aligning that infrastructure for business objectives in an adaptive way for changing domain or customer needs. Such flexibility is essential for optimizing IT processes around end user goals. The reality is most conventional methods of HA simply add to the infrastructural complexity of digital transformation, but don't address the primary need of adapting to evolving business requirements. In the face of digital transformation, organizations need to streamline their various IT systems around domain objectives, as opposed to doing the opposite, which simply decreases efficiency while increasing cost.

Enter Intelligent Availability

Intelligent availability is ideal for digital transformation because it enables workloads to always run on the best execution environment (BEV). It combines this advantage with the continuous operations of HA, but takes a fundamentally different approach in doing so. Intelligent availability takes the base idea of HA, to dedicate resources between systems to prevent downtime, and builds on it — extending it to moving them for maximizing competitive advantage. It allows organizations to move workloads between operating systems, servers, and physical and virtual environments with virtually no downtime.

The core of this approach is in the capacity of technologies that provide availability that includes intelligence to move workloads independent of one another, which is a fundamental limitation of traditional physical or virtualized approaches to workload management. By disengaging an array of system components (containers, application workloads, services and share files) without having to standardize on just one database or OS, these technologies transfer them to the environment which fits best from an IT goal and budgetary standpoint.

It's vital to remember that this judgment call is based on how to best achieve a defined business objective. Furthermore, these technologies provide this flexibility for individual instances to ensure negligible downtime and a smooth transition from one environment to another. The use cases for this instantaneous portability are abundant. Organizations can use these techniques for uninterrupted availability, integration with new or legacy systems, or the incorporation of additional data sources. Most importantly, they can do so with the assurance that the intelligent routing of the underlying technologies are selecting the optimal setting to execute workloads (i.e., BEV). Once suitably architected, the process takes no longer than a simple stop and start of a container or an application.

Intelligent Availability – the Intelligent Choice

Intelligent availability is important for a number of reasons. First, it creates all the advantages of HA, at a lower cost, and with a dramatically greater degree of efficiency. Next, it provides the agility required to capitalize on digital transformation, enabling organizations to quickly and easily move systems, applications, and workloads to where they can create the greatest competitive impact; and then when requirements change, move them back, or to someplace else.

As the saying goes, "The only constant is change." And in today's constantly changing business environment, intelligent availability delivers the agility required to not only survive, but to prevail.

Don Boxley is CEO and Co-Founder of DH2i
Share this

The Latest

February 27, 2024

Generative AI has recently experienced unprecedented dramatic growth, making it one of the most exciting transformations the tech industry has seen in some time. However, this growth also poses a challenge for tech leaders who will be expected to deliver on the promise of new technology. In 2024, delivering tangible outcomes that meet the potential of AI, and setting up incubator projects for the future will be key tasks ...

February 26, 2024

SAP is a tool for automating business processes. Managing SAP solutions, especially with the shift to the cloud-based S/4HANA platform, can be intricate. To explore the concerns of SAP users during operational transformations and automation, a survey was conducted in mid-2023 by Digitate and Americas' SAP Users' Group ...

February 22, 2024

Some companies are just starting to dip their toes into developing AI capabilities, while (few) others can claim they have built a truly AI-first product. Regardless of where a company is on the AI journey, leaders must understand what it means to build every aspect of their product with AI in mind ...

February 21, 2024

Generative AI will usher in advantages within various industries. However, the technology is still nascent, and according to the recent Dynatrace survey there are many challenges and risks that organizations need to overcome to use this technology effectively ...

February 20, 2024

In today's digital era, monitoring and observability are indispensable in software and application development. Their efficacy lies in empowering developers to swiftly identify and address issues, enhance performance, and deliver flawless user experiences. Achieving these objectives requires meticulous planning, strategic implementation, and consistent ongoing maintenance. In this blog, we're sharing our five best practices to fortify your approach to application performance monitoring (APM) and observability ...

February 16, 2024

In MEAN TIME TO INSIGHT Episode 3, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at Enterprise Management Associates (EMA) discusses network security with Chris Steffen, VP of Research Covering Information Security, Risk, and Compliance Management at EMA ...

February 15, 2024

In a time where we're constantly bombarded with new buzzwords and technological advancements, it can be challenging for businesses to determine what is real, what is useful, and what they truly need. Over the years, we've witnessed the rise and fall of various tech trends, such as the promises (and fears) of AI becoming sentient and replacing humans to the declaration that data is the new oil. At the end of the day, one fundamental question remains: How can companies navigate through the tech buzz and make informed decisions for their future? ...

February 14, 2024

We increasingly see companies using their observability data to support security use cases. It's not entirely surprising given the challenges that organizations have with legacy SIEMs. We wanted to dig into this evolving intersection of security and observability, so we surveyed 500 security professionals — 40% of whom were either CISOs or CSOs — for our inaugural State of Security Observability report ...

February 13, 2024

Cloud computing continues to soar, with little signs of slowing down ... But, as with any new program, companies are seeing substantial benefits in the cloud but are also navigating budgetary challenges. With an estimated 94% of companies using cloud services today, priorities for IT teams have shifted from purely adoption-based to deploying new strategies. As they explore new territories, it can be a struggle to exploit the full value of their spend and the cloud's transformative capabilities ...

February 12, 2024

What will the enterprise of the future look like? If we asked this question three years ago, I doubt most of us would have pictured today as we know it: a future where generative AI has become deeply integrated into business and even our daily lives ...