Advanced IT Analytics, AIOps, Big Data - What's Really Going On?
August 14, 2018

Dennis Drogseth
EMA

Share this

This question is really two questions.

The first would be: What's really going on in terms of a confusion of terms? — as we wrestle with AIOps, IT Operational Analytics, big data, AI bots, machine learning, and more generically stated "AI platforms" (… and the list is far from complete).

The second might be phrased as: What's really going on in terms of real-world advanced IT analytics deployments — where are they succeeding, and where are they not?

This blog will look at both questions as a way of introducing EMA's newest research with data just coming in from North America and Europe (UK, Germany and France). Like this blog, our research will also examine both questions, with the weight on examining real-world deployments. We hope to have at least a few real answers for you by September, with fresh data and timely analysis.

A Term by Any Other Name …

I'm borrowing, admittedly, from Shakespeare, to suggest that buzzwords in tech often get in the way of understanding real value, even as they seek to clarify it. In the case of what EMA prefers to call "advanced IT analytics" the fugal use of AI, machine learning, and big data, among other terms, often confuses what's really afoot. The real value is almost always in the mixture of science and artistry with which the analytics are applied to various use cases, not a purely academic discussion about what heuristics lie underneath the hood.

But EMA believes there is nevertheless a commonality across all true AIA solutions.

Last summer, EMA embarked on research that strongly indicates that there are common benefits, requirements and challenge surrounding an investment in AIA. Some of the more dramatic benefits typically included values in unifying IT across silos, toolset consolidation, dramatic reductions in mean-time-to-repair and mean time between failures, as well as other use cases that typically ranged from performance and availability management, to change management and capacity optimization, to support for DevOps and SecOps, to optimizing migrations to public cloud. As such we view AIA as a potentially transformative arena for both IT and the business it serves.

In our current research, we will be asking some simple questions regarding terminology and attributes to test the waters, especially in the now prevalent area of AIOps. But we'll also be able to track deployments centering on big data, security-related analytics, capacity-specific analytics and end-user or customer experience analytics, to see what patterns emerge and how they actually differ.

How Do You Make it All Real?

What's currently afoot in operationalizing advanced analytics for IT?

This is the main focus for our research, and it will also help to inform on the first question — what people are actually doing when they champion AIOps, or big data, etc.

Some areas of focus include:

Use cases: Here we are expanding on capacity, security and end-user experience to include cross-domain application/infrastructure availability and performance, DevOps/agile, cost management (including hybrid and multi-cloud), change management, and IoT.

Leadership: Who's leading in investments in advanced IT analytics, and who's leading in overseeing and actually delivering on deployments? What are their objectives, and how are they going about it?

Best practices: Are there any consistent best practices that emerge from the usual laundry list when advanced analytics are being deployed and used? If so, what are they? And how effective are they?

Integrations: How much are investments in advanced analytics being used to assimilate and optimize other toolsets?

Automation: What are the current priorities for integrated automation, where AI and machine learning can help to intelligently and adaptively drive more automated outcomes?

AI bots: Along with general automation priorities, we are looking at AI bot strategies to see how they converge (or don't) with AIOps and other analytics investments.

Technology and data sources: What data sets are IT organizations most hungry for when it comes to advanced analytics? What heuristics do they feel are most critical now, and in the future? How is service modeling and dependency mapping playing in the advanced IT analytics arena?

Roadblocks and benefits: What are the major obstacles remaining in 2018 to effective advanced IT analytics deployments? And what are the more prevalent benefits achieved?

Summing Up

These are admittedly a lot of areas for examination, and once again, the list is not complete. Moreover, we plan to investigate the answers we receive for all these questions from various perspectives, including company size, vertical, geography, roles (what do IT executives think versus more hands-on stakeholders?), success rates and other factors.

Finally, we'll be looking for trends based on the research done in two prior reports: Advanced IT Analytics: A Look at Real-World Adoptions in the Real World March 2016, and The Many Faces of Advanced Operations Analytics September 2014.

What I'm hoping we'll see in September is continued growth toward a more mature, more business-aligned, and more IT-unifying approach to advanced analytics deployments, with a growing number of stakeholders and benefits. I'm also hoping for a more definitive set of AIA profiles, as operations analytics continues to redefine itself away from just "big data," and as the need for more evolved, holistic and dynamic multi-use-case AIA platforms becomes more pronounced.

But it's too soon to tell. The data is still coming in. Nevertheless, I should know soon. In a follow-up blog in the first-half of September I'll be able to present some real news.

Dennis Drogseth is VP at Enterprise Management Associates (EMA)
Share this

The Latest

August 21, 2019

For the first time, a majority of companies are putting mission critical apps in the cloud, according to the latest report by Cloud Foundry Foundation ...

August 20, 2019

The cloud continues to transform IT in every industry. But in order to migrate to the cloud, embrace these new technologies and truly evolve their business, organizations need an underlying network that can support digital transformation ...

August 19, 2019

One common infrastructure challenge arises with virtual private networks (VPNs). VPNs have long been relied upon to deliver the network connectivity and security enterprises required at a price they could afford. Organizations still routinely turn to them to provide internal and trusted third-parties with "secure" remote access to isolated networks. However, with the rise in mobile, IoT, multi- and hybrid-cloud, as well as edge computing, traditional enterprise perimeters are extending and becoming blurred ...

August 15, 2019

The configuration management database (CMDB), along with its more federated companion, the configuration management system (CMS), has been bathed in a deluge of negative opinions from all fronts — industry experts, vendors, and IT professionals. But from what recent EMA research on analytics, ITSM performance and other areas is indicating, those negative views seem to be missing out on a real undercurrent of truth — that CMDB/CMS alignments, whatever their defects, strongly skew to success in terms of overall IT progressiveness and effectiveness ...

August 14, 2019

The on-demand economy has transformed the way we move around, eat, learn, travel and connect at a massive scale. However, with disruption and big aspirations comes big, complex challenges. To take these challenges head-on, on-demand economy companies are finding new ways to deliver their services and products to an audience with ever-increasing expectations, and that's what we'll look at in this blog ...

August 13, 2019

To thrive in today's highly competitive digital business landscape, organizations must harness their "digital DNA." In other words, they need to connect all of their systems and databases — including various business applications, devices, big data and any instances of IoT and hybrid cloud environments — so they're accessible and actionable. By integrating all existing components and new technologies, organizations can gain a comprehensive, trusted view of their business functions, thereby enabling more agile deployment processes and ensuring scalable growth and relevance over the long-term ...

August 12, 2019

Advancements in technology innovation are happening so quickly, the decision of where and when to transform can be a moving target for businesses. When done well, digital transformation improves the customer experience while optimizing operational efficiency. To get there, enterprises must encourage experimentation to overcome organizational obstacles. In other words ...

August 08, 2019

IoT adoption is growing rapidly, and respondents believe 30% of their company’s revenue two years from now will be due to IoT, according to the new IoT Signals report from Microsoft Corp ...

August 07, 2019

It's been all over the news the last few months. After two fatal crashes, Boeing was forced to ground its 737. The doomed model is now undergoing extensive testing to get it back into service and production. Large organizations often tell stakeholders that even though all software goes through extensive testing, this type of thing “just happens.” But that is exactly the problem. While the human component of application development and testing won't go away, it can be eased and supplemented by far more efficient and automated methods to proactively determine software health and identify flaws ...

August 06, 2019

Despite significant investment in AI, many companies are still struggling to stabilize and scale their AI initiatives, according to State of Development and Operations of AI Applications 2019 from Dotscience ...