This question is really two questions.
The first would be: What's really going on in terms of a confusion of terms? — as we wrestle with AIOps, IT Operational Analytics, big data, AI bots, machine learning, and more generically stated "AI platforms" (… and the list is far from complete).
The second might be phrased as: What's really going on in terms of real-world advanced IT analytics deployments — where are they succeeding, and where are they not?
This blog will look at both questions as a way of introducing EMA's newest research with data just coming in from North America and Europe (UK, Germany and France). Like this blog, our research will also examine both questions, with the weight on examining real-world deployments. We hope to have at least a few real answers for you by September, with fresh data and timely analysis.
A Term by Any Other Name …
I'm borrowing, admittedly, from Shakespeare, to suggest that buzzwords in tech often get in the way of understanding real value, even as they seek to clarify it. In the case of what EMA prefers to call "advanced IT analytics" the fugal use of AI, machine learning, and big data, among other terms, often confuses what's really afoot. The real value is almost always in the mixture of science and artistry with which the analytics are applied to various use cases, not a purely academic discussion about what heuristics lie underneath the hood.
But EMA believes there is nevertheless a commonality across all true AIA solutions.
Last summer, EMA embarked on research that strongly indicates that there are common benefits, requirements and challenge surrounding an investment in AIA. Some of the more dramatic benefits typically included values in unifying IT across silos, toolset consolidation, dramatic reductions in mean-time-to-repair and mean time between failures, as well as other use cases that typically ranged from performance and availability management, to change management and capacity optimization, to support for DevOps and SecOps, to optimizing migrations to public cloud. As such we view AIA as a potentially transformative arena for both IT and the business it serves.
In our current research, we will be asking some simple questions regarding terminology and attributes to test the waters, especially in the now prevalent area of AIOps. But we'll also be able to track deployments centering on big data, security-related analytics, capacity-specific analytics and end-user or customer experience analytics, to see what patterns emerge and how they actually differ.
How Do You Make it All Real?
What's currently afoot in operationalizing advanced analytics for IT?
This is the main focus for our research, and it will also help to inform on the first question — what people are actually doing when they champion AIOps, or big data, etc.
Some areas of focus include:
■ Use cases: Here we are expanding on capacity, security and end-user experience to include cross-domain application/infrastructure availability and performance, DevOps/agile, cost management (including hybrid and multi-cloud), change management, and IoT.
■ Leadership: Who's leading in investments in advanced IT analytics, and who's leading in overseeing and actually delivering on deployments? What are their objectives, and how are they going about it?
■ Best practices: Are there any consistent best practices that emerge from the usual laundry list when advanced analytics are being deployed and used? If so, what are they? And how effective are they?
■ Integrations: How much are investments in advanced analytics being used to assimilate and optimize other toolsets?
■ Automation: What are the current priorities for integrated automation, where AI and machine learning can help to intelligently and adaptively drive more automated outcomes?
■ AI bots: Along with general automation priorities, we are looking at AI bot strategies to see how they converge (or don't) with AIOps and other analytics investments.
■ Technology and data sources: What data sets are IT organizations most hungry for when it comes to advanced analytics? What heuristics do they feel are most critical now, and in the future? How is service modeling and dependency mapping playing in the advanced IT analytics arena?
■ Roadblocks and benefits: What are the major obstacles remaining in 2018 to effective advanced IT analytics deployments? And what are the more prevalent benefits achieved?
Summing Up
These are admittedly a lot of areas for examination, and once again, the list is not complete. Moreover, we plan to investigate the answers we receive for all these questions from various perspectives, including company size, vertical, geography, roles (what do IT executives think versus more hands-on stakeholders?), success rates and other factors.
Finally, we'll be looking for trends based on the research done in two prior reports: Advanced IT Analytics: A Look at Real-World Adoptions in the Real World March 2016, and The Many Faces of Advanced Operations Analytics September 2014.
What I'm hoping we'll see in September is continued growth toward a more mature, more business-aligned, and more IT-unifying approach to advanced analytics deployments, with a growing number of stakeholders and benefits. I'm also hoping for a more definitive set of AIA profiles, as operations analytics continues to redefine itself away from just "big data," and as the need for more evolved, holistic and dynamic multi-use-case AIA platforms becomes more pronounced.
But it's too soon to tell. The data is still coming in. Nevertheless, I should know soon. In a follow-up blog in the first-half of September I'll be able to present some real news.
The Latest
As businesses and individuals increasingly seek to leverage artificial intelligence (AI), the cloud has become a critical enabler of AI's transformative power. Cloud platforms allow organizations to seamlessly scale their AI capabilities, hosting complex machine learning (ML) models while providing the flexibility needed to meet evolving business needs ... However, the promise of AI in the cloud brings significant challenges ...
The business case for digital employee experience (DEX) is clear: more than half (55%) of office workers say negative experiences with workplace technology impact their mood/morale and 93% of security professionals say prioritizing DEX has a positive impact on an organization's cybersecurity efforts, according to the 2024 Digital Employee Experience Report: A CIO Call to Action, a new report from Ivanti ...
For IT leaders, a few hurdles stand in the way of AI success. They include concerns over data quality, security and the ability to implement projects. Understanding and addressing these concerns can give organizations a realistic view of where they stand in implementing AI — and balance out a certain level of overconfidence many organizations seem to have — to enable them to make the most of the technology's potential ...
For the last 18 years — through pandemic times, boom times, pullbacks, and more — little has been predictable except one thing: Worldwide cloud spending will be higher this year than last year and a lot higher next year. But as companies spend more, are they spending more intelligently? Just how efficient are our modern SaaS systems? ...
The OpenTelemetry End-User SIG surveyed more than 100 OpenTelemetry users to learn more about their observability journeys and what resources deliver the most value when establishing an observability practice ... Regardless of experience level, there's a clear need for more support and continued education ...
A silo is, by definition, an isolated component of an organization that doesn't interact with those around it in any meaningful way. This is the antithesis of collaboration, but its effects are even more insidious than the shutting down of effective conversation ...
New Relic's 2024 State of Observability for Industrials, Materials, and Manufacturing report outlines the adoption and business value of observability for the industrials, materials, and manufacturing industries ... Here are 8 key takeaways from the report ...
For mission-critical applications, it's often easy to justify an investment in a solution designed to ensure that the application is available no less than 99.99% of the time — easy because the cost to the organization of that app being offline would quickly surpass the cost of a high availability (HA) solution ... But not every application warrants the investment in an HA solution with redundant infrastructure spanning multiple data centers or cloud availability zones ...
The edge brings computing resources and data storage closer to end users, which explains the rapid boom in edge computing, but it also generates a huge amount of data ... 44% of organizations are investing in edge IT to create new customer experiences and improve engagement. To achieve those goals, edge services observability should be a centerpoint of that investment ...
The growing adoption of efficiency-boosting technologies like artificial intelligence (AI) and machine learning (ML) helps counteract staffing shortages, rising labor costs, and talent gaps, while giving employees more time to focus on strategic projects. This trend is especially evident in the government contracting sector, where, according to Deltek's 2024 Clarity Report, 34% of GovCon leaders rank AI and ML in their top three technology investment priorities for 2024, above perennial focus areas like cybersecurity, data management and integration, business automation and cloud infrastructure ...