Advanced IT Analytics, AIOps, Big Data - What's Really Going On?
August 14, 2018

Dennis Drogseth
EMA

Share this

This question is really two questions.

The first would be: What's really going on in terms of a confusion of terms? — as we wrestle with AIOps, IT Operational Analytics, big data, AI bots, machine learning, and more generically stated "AI platforms" (… and the list is far from complete).

The second might be phrased as: What's really going on in terms of real-world advanced IT analytics deployments — where are they succeeding, and where are they not?

This blog will look at both questions as a way of introducing EMA's newest research with data just coming in from North America and Europe (UK, Germany and France). Like this blog, our research will also examine both questions, with the weight on examining real-world deployments. We hope to have at least a few real answers for you by September, with fresh data and timely analysis.

A Term by Any Other Name …

I'm borrowing, admittedly, from Shakespeare, to suggest that buzzwords in tech often get in the way of understanding real value, even as they seek to clarify it. In the case of what EMA prefers to call "advanced IT analytics" the fugal use of AI, machine learning, and big data, among other terms, often confuses what's really afoot. The real value is almost always in the mixture of science and artistry with which the analytics are applied to various use cases, not a purely academic discussion about what heuristics lie underneath the hood.

But EMA believes there is nevertheless a commonality across all true AIA solutions.

Last summer, EMA embarked on research that strongly indicates that there are common benefits, requirements and challenge surrounding an investment in AIA. Some of the more dramatic benefits typically included values in unifying IT across silos, toolset consolidation, dramatic reductions in mean-time-to-repair and mean time between failures, as well as other use cases that typically ranged from performance and availability management, to change management and capacity optimization, to support for DevOps and SecOps, to optimizing migrations to public cloud. As such we view AIA as a potentially transformative arena for both IT and the business it serves.

In our current research, we will be asking some simple questions regarding terminology and attributes to test the waters, especially in the now prevalent area of AIOps. But we'll also be able to track deployments centering on big data, security-related analytics, capacity-specific analytics and end-user or customer experience analytics, to see what patterns emerge and how they actually differ.

How Do You Make it All Real?

What's currently afoot in operationalizing advanced analytics for IT?

This is the main focus for our research, and it will also help to inform on the first question — what people are actually doing when they champion AIOps, or big data, etc.

Some areas of focus include:

Use cases: Here we are expanding on capacity, security and end-user experience to include cross-domain application/infrastructure availability and performance, DevOps/agile, cost management (including hybrid and multi-cloud), change management, and IoT.

Leadership: Who's leading in investments in advanced IT analytics, and who's leading in overseeing and actually delivering on deployments? What are their objectives, and how are they going about it?

Best practices: Are there any consistent best practices that emerge from the usual laundry list when advanced analytics are being deployed and used? If so, what are they? And how effective are they?

Integrations: How much are investments in advanced analytics being used to assimilate and optimize other toolsets?

Automation: What are the current priorities for integrated automation, where AI and machine learning can help to intelligently and adaptively drive more automated outcomes?

AI bots: Along with general automation priorities, we are looking at AI bot strategies to see how they converge (or don't) with AIOps and other analytics investments.

Technology and data sources: What data sets are IT organizations most hungry for when it comes to advanced analytics? What heuristics do they feel are most critical now, and in the future? How is service modeling and dependency mapping playing in the advanced IT analytics arena?

Roadblocks and benefits: What are the major obstacles remaining in 2018 to effective advanced IT analytics deployments? And what are the more prevalent benefits achieved?

Summing Up

These are admittedly a lot of areas for examination, and once again, the list is not complete. Moreover, we plan to investigate the answers we receive for all these questions from various perspectives, including company size, vertical, geography, roles (what do IT executives think versus more hands-on stakeholders?), success rates and other factors.

Finally, we'll be looking for trends based on the research done in two prior reports: Advanced IT Analytics: A Look at Real-World Adoptions in the Real World March 2016, and The Many Faces of Advanced Operations Analytics September 2014.

What I'm hoping we'll see in September is continued growth toward a more mature, more business-aligned, and more IT-unifying approach to advanced analytics deployments, with a growing number of stakeholders and benefits. I'm also hoping for a more definitive set of AIA profiles, as operations analytics continues to redefine itself away from just "big data," and as the need for more evolved, holistic and dynamic multi-use-case AIA platforms becomes more pronounced.

But it's too soon to tell. The data is still coming in. Nevertheless, I should know soon. In a follow-up blog in the first-half of September I'll be able to present some real news.

Dennis Drogseth is VP at Enterprise Management Associates (EMA)
Share this

The Latest

May 25, 2023

Developers need a tool that can be portable and vendor agnostic, given the advent of microservices. It may be clear an issue is occurring; what may not be clear is if it's part of a distributed system or the app itself. Enter OpenTelemetry, commonly referred to as OTel, an open-source framework that provides a standardized way of collecting and exporting telemetry data (logs, metrics, and traces) from cloud-native software ...

May 24, 2023

As SLOs grow in popularity their usage is becoming more mature. For example, 82% of respondents intend to increase their use of SLOs, and 96% have mapped SLOs directly to their business operations or already have a plan to, according to The State of Service Level Objectives 2023 from Nobl9 ...

May 23, 2023

Observability has matured beyond its early adopter position and is now foundational for modern enterprises to achieve full visibility into today's complex technology environments, according to The State of Observability 2023, a report released by Splunk in collaboration with Enterprise Strategy Group ...

May 22, 2023

Before network engineers even begin the automation process, they tend to start with preconceived notions that oftentimes, if acted upon, can hinder the process. To prevent that from happening, it's important to identify and dispel a few common misconceptions currently out there and how networking teams can overcome them. So, let's address the three most common network automation myths ...

May 18, 2023

Many IT organizations apply AI/ML and AIOps technology across domains, correlating insights from the various layers of IT infrastructure and operations. However, Enterprise Management Associates (EMA) has observed significant interest in applying these AI technologies narrowly to network management, according to a new research report, titled AI-Driven Networks: Leveling Up Network Management with AI/ML and AIOps ...

May 17, 2023

When it comes to system outages, AIOps solutions with the right foundation can help reduce the blame game so the right teams can spend valuable time restoring the impacted services rather than improving their MTTI score (mean time to innocence). In fact, much of today's innovation around ChatGPT-style algorithms can be used to significantly improve the triage process and user experience ...

May 16, 2023

Gartner identified the top 10 data and analytics (D&A) trends for 2023 that can guide D&A leaders to create new sources of value by anticipating change and transforming extreme uncertainty into new business opportunities ...

May 15, 2023

The only way for companies to stay competitive is to modernize applications, yet there's no denying that bringing apps into the modern era can be challenging ... Let's look at a few ways to modernize applications and consider what new obstacles and opportunities 2023 presents ...

May 11, 2023
Applications can be subjected to high traffic on certain days, which, if not taken into account, can lead to unpredictable outcomes and customer dissatisfaction. These may include slow loading speeds, downtime, and unpredictable outcomes, among others ... Hence, applications must be tested for load thresholds to improve performance. Businesses that ignore load performance testing and fail to continually scale these applications leave themselves open to service outages, customer dissatisfaction, and monetary losses ...
May 10, 2023

As online penetration grows, retailers' profits are shrinking — with the cost of serving customers anytime, anywhere, at any speed not bringing in enough topline growth to best monetize even existing investments in technology, systems, infrastructure, and people, let alone new investments, according to Digital-First Retail: Turning Profit Destruction into Customer and Shareholder Value, a new report from AlixPartners and World Retail Congress ...