AI Assets and Intellectual Property Ownership
May 13, 2019

Ramesh Mahalingam
Vizru

Share this

A subtle, deliberate shift has occurred within the software industry which, at present, only the most innovative organizations have seized upon for competitive advantage. Although primarily driven by Artificial Intelligence (AI), this transformation strikes at the core of the most pervasive IT resources including cloud computing and predictive analytics.

Initially, software was used to solve internal problems via an ownership model that eventually yielded to the contemporary SaaS paradigm in which applications are effectively rented. However, the next generation of application building is based on nuanced, individualized customer experiences in which ownership of the intellectual property of software is a critical determinant for optimizing revenues and customer relationships.

Intellectual property ownership is not possible with contemporary SaaS offerings. What's required is a new approach in which organizations decouple their stacks from AI vendors', commercialize them for bespoke customer experiences, and retain full rights to the intellectual property of the customized, artisan AI models delivering these advantages. The monetary benefits of owning the AI assets organizations use, and their intellectual property, will ensure this next evolution of app building is as ubiquitous as the current one is.

Customized Artisan Solutions and AI Models

AI is the forerunner in this movement because of the degree of individualization it offers via its micro-segmentation capacity. Artificial Intelligence systems can personalize models for particular demographics including age, geographic location, user behavior and an assortment of other pertinent categories. For example, in finance, a bot can know the best way to communicate with a person according to his or her profile and customer segmentation.

Because all of these various factors are packaged within AI models, there's a pivotal distinction in owning their intellectual property, particularly when it comes to commercializing it by offering services to consumers. However, when those models are simply rented from AI vendors via SaaS or other options, organizations are restricted in their ability to customize solutions by including the vendor in the processes. The reality is that simply by using the vendor's resources to build or deploy models, organizations are compromising their claims to the intellectual property of services based on them.

Commercializing Bespoke AI

Intellectual property is a key factor for commercializing customized AI models that tailor services to individual consumers. In insurance, for example, an organization may want to create additional revenue streams by offering a service to senior customers to store their wills, trusts, and other such documents in one place. In theory, such a company should have the autonomy to sell this capability as a service. If its applications are running in current cloud offerings like Salesforce, however, this conglomerate owns the intellectual property for this idea because it's facilitating the infrastructure.

Modern organizations require total ownership of their AI resources, whether that involves owning models, bots, or the intellectual property driving them. Without ownership of that intellectual property, organizations are considerably slowed — if not stuck in a state of paralysis — when it comes to extending new, personalized services to their customers that AI substantially helps facilitate. But if they owned the whole stack themselves, they could reap the full monetary benefits of commercializing AI without any restrictions of building atop an application provider's stack.

Decoupling Services from AI Stacks

The ability to decouple AI from a vendor's stack to commercialize various services at will is a crucial prerequisite for exploiting the boons of intellectual property ownership of AI assets. The majority of contemporary SaaS providers don't offer this degree of autonomy. Nonetheless, modern AI platforms give organizations the license to decouple everything needed to independently deploy AI services where they're most beneficial, giving them sole claim to the intellectual property.

Typically comprised of a user interface, bots specializing in various forms of AI, and respective layers for workflows and integration, these mechanisms are optimal for rapid deployments in a multiplicity of environments whether on-premises, in hybrid or multi-clouds, or at the edge. Such solutions are virtual software factories in which organizations not only own their intellectual property, but can sell AI services to customers with complete autonomy.

The Valuation of Intellectual Property

Ultimately, this emergent paradigm for deploying software will usurp the modern one for customer-facing applications because of the financial benefits of intellectual property's valuation. Intellectual property rights enable organizations to deliver hyper-personalized customer interactions, own the artisan AI models driving them, and profit exponentially on their net valuation.

In insurance, if a company can demonstrate its customers on-board through a technology platform it owns, its valuation increases 10 times because it's categorized differently on its balance sheet than if it used another's platform. Insurance revenues of $20 million become $200 million. That difference is the final boon of intellectual property ownership in the AI services space, which also includes individualization and celeritous commercialization to satisfy customers the way other technologies can't.

Ramesh Mahalingam is CEO of Vizru
Share this

The Latest

March 04, 2024

This year's Super Bowl drew in viewership of nearly 124 million viewers and made history as the most-watched live broadcast event since the 1969 moon landing. To support this spike in viewership, streaming companies like YouTube TV, Hulu and Paramount+ began preparing their IT infrastructure months in advance to ensure an exceptional viewer experience without outages or major interruptions. New Relic conducted a survey to understand the importance of a seamless viewing experience and the impact of outages during major streaming events such as the Super Bowl ...

March 01, 2024

As organizations continue to navigate the complexities of the digital era, which has been marked by exponential advancements in AI and technology, the strategic deployment of modern, practical applications has become indispensable for sustaining competitive advantage and realizing business goals. The Info-Tech Research Group report, Applications Priorities 2024, explores the following five initiatives for emerging and leading-edge technologies and practices that can enable IT and applications leaders to optimize their application portfolio and improve on capabilities needed to meet the ambitions of their organizations ...

February 29, 2024

Despite the growth in popularity of artificial intelligence (AI) and ML across a number of industries, there is still a huge amount of unrealized potential, with many businesses playing catch-up and still planning how ML solutions can best facilitate processes. Further progression could be limited without investment in specialized technical teams to drive development and integration ...

February 28, 2024

With over 200 streaming services to choose from, including multiple platforms featuring similar types of entertainment, users have little incentive to remain loyal to any given platform if it exhibits performance issues. Big names in streaming like Hulu, Amazon Prime and HBO Max invest thousands of hours into engineering observability and closed-loop monitoring to combat infrastructure and application issues, but smaller platforms struggle to remain competitive without access to the same resources ...

February 27, 2024

Generative AI has recently experienced unprecedented dramatic growth, making it one of the most exciting transformations the tech industry has seen in some time. However, this growth also poses a challenge for tech leaders who will be expected to deliver on the promise of new technology. In 2024, delivering tangible outcomes that meet the potential of AI, and setting up incubator projects for the future will be key tasks ...

February 26, 2024

SAP is a tool for automating business processes. Managing SAP solutions, especially with the shift to the cloud-based S/4HANA platform, can be intricate. To explore the concerns of SAP users during operational transformations and automation, a survey was conducted in mid-2023 by Digitate and Americas' SAP Users' Group ...

February 22, 2024

Some companies are just starting to dip their toes into developing AI capabilities, while (few) others can claim they have built a truly AI-first product. Regardless of where a company is on the AI journey, leaders must understand what it means to build every aspect of their product with AI in mind ...

February 21, 2024

Generative AI will usher in advantages within various industries. However, the technology is still nascent, and according to the recent Dynatrace survey there are many challenges and risks that organizations need to overcome to use this technology effectively ...

February 20, 2024

In today's digital era, monitoring and observability are indispensable in software and application development. Their efficacy lies in empowering developers to swiftly identify and address issues, enhance performance, and deliver flawless user experiences. Achieving these objectives requires meticulous planning, strategic implementation, and consistent ongoing maintenance. In this blog, we're sharing our five best practices to fortify your approach to application performance monitoring (APM) and observability ...

February 16, 2024

In MEAN TIME TO INSIGHT Episode 3, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at Enterprise Management Associates (EMA) discusses network security with Chris Steffen, VP of Research Covering Information Security, Risk, and Compliance Management at EMA ...