APM and ITOA: Clearing Up the Confusion
April 11, 2016

Guy Warren
ITRS Group

Share this

I was reading a discussion on a social media site about Application Performance Management, and realized that there is a lot of confusion about what is Application Performance Monitoring, Application Performance Management (APM) and IT Operational Analytics (ITOA).

Just looking at the words used, you would believe that Application Performance Monitoring is focused on watching data and monitoring it for a particular condition or state. Application Performance Management would lead you to believe that this is a wider field which includes a range of techniques to certainly monitor the application, but also to manage other aspects of the IT estate. The degree to which complex analytics are used is unclear, but potentially IT Operational Analytics could be seen as a subset of Application Performance Management, although the focus on application might make it more limited in its scope than ITOA.

To help clarify this rather muddy set of terms, we use two models which we find are much clearer and logical, and have less ambiguity than the APM and ITOA definitions.

The Monitoring Maturity Model

The first model we call the Monitoring Maturity Model, because it is a layered model where generally the higher levels are based on data collected from the lower levels. The model is:

1. Infrastructure Monitoring: Collection data on the servers, operating systems, network and storage and setting rule based alerts to catch potential problems.

2. Basic Application Monitoring: From interrogating the Operating System, capture and alert on data about the processes running on the servers. This would include CPU & memory utilization, disk I/O, network I/O etc.

3. Advanced Application Monitoring: Installing a tailored agent on the server which is capturing data specific to the application it is monitoring. This can be "inside the app" data or "outside the app" which is useful for Off the Shelf software products and middleware.

4. Flow Monitoring: This is capturing data about the information passing between applications and monitoring/reporting on data flows. This would include volumes/second, volumes per counterparty, latency etc.

5. Business and IT Analysis: This is the analysis of both business data and "machine" data from levels 1 and 2 to understand the business activity and the behavior of the IT estate.

Monitoring vs Analytics

The second model is separating monitoring from analytics. There is no hard definition which separates them so we break the types of analysis into three types:

1. Detect: This is a rule based detection of an alert condition. This is generally what people mean when they talk about Monitoring.

2. Analyze: This is the collection of lots of data, even data which did not trigger a rule in Detect, and analyzing it to discover more insight. This may be as simple as trends, or as complex as Machine Learning and time series pattern based Anomaly Detection. This would also include techniques like Bayesian Network Causal Analysis.

3. Predict: This uses current and historic data to try and predict future or “what if” scenarios. Again, this can be as simple as extrapolation, or as complex as comparison of current state to empirically derived behavioral data, the likes of which you might have gathered in a performance lab when stress testing an application.

Whichever way you model your IT estate and the behavior of your applications, it is necessary to have a clear language so that people are talking about the same thing.

Guy Warren is CEO of ITRS Group.

Share this

The Latest

February 28, 2024

With over 200 streaming services to choose from, including multiple platforms featuring similar types of entertainment, users have little incentive to remain loyal to any given platform if it exhibits performance issues. Big names in streaming like Hulu, Amazon Prime and HBO Max invest thousands of hours into engineering observability and closed-loop monitoring to combat infrastructure and application issues, but smaller platforms struggle to remain competitive without access to the same resources ...

February 27, 2024

Generative AI has recently experienced unprecedented dramatic growth, making it one of the most exciting transformations the tech industry has seen in some time. However, this growth also poses a challenge for tech leaders who will be expected to deliver on the promise of new technology. In 2024, delivering tangible outcomes that meet the potential of AI, and setting up incubator projects for the future will be key tasks ...

February 26, 2024

SAP is a tool for automating business processes. Managing SAP solutions, especially with the shift to the cloud-based S/4HANA platform, can be intricate. To explore the concerns of SAP users during operational transformations and automation, a survey was conducted in mid-2023 by Digitate and Americas' SAP Users' Group ...

February 22, 2024

Some companies are just starting to dip their toes into developing AI capabilities, while (few) others can claim they have built a truly AI-first product. Regardless of where a company is on the AI journey, leaders must understand what it means to build every aspect of their product with AI in mind ...

February 21, 2024

Generative AI will usher in advantages within various industries. However, the technology is still nascent, and according to the recent Dynatrace survey there are many challenges and risks that organizations need to overcome to use this technology effectively ...

February 20, 2024

In today's digital era, monitoring and observability are indispensable in software and application development. Their efficacy lies in empowering developers to swiftly identify and address issues, enhance performance, and deliver flawless user experiences. Achieving these objectives requires meticulous planning, strategic implementation, and consistent ongoing maintenance. In this blog, we're sharing our five best practices to fortify your approach to application performance monitoring (APM) and observability ...

February 16, 2024

In MEAN TIME TO INSIGHT Episode 3, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at Enterprise Management Associates (EMA) discusses network security with Chris Steffen, VP of Research Covering Information Security, Risk, and Compliance Management at EMA ...

February 15, 2024

In a time where we're constantly bombarded with new buzzwords and technological advancements, it can be challenging for businesses to determine what is real, what is useful, and what they truly need. Over the years, we've witnessed the rise and fall of various tech trends, such as the promises (and fears) of AI becoming sentient and replacing humans to the declaration that data is the new oil. At the end of the day, one fundamental question remains: How can companies navigate through the tech buzz and make informed decisions for their future? ...

February 14, 2024

We increasingly see companies using their observability data to support security use cases. It's not entirely surprising given the challenges that organizations have with legacy SIEMs. We wanted to dig into this evolving intersection of security and observability, so we surveyed 500 security professionals — 40% of whom were either CISOs or CSOs — for our inaugural State of Security Observability report ...

February 13, 2024

Cloud computing continues to soar, with little signs of slowing down ... But, as with any new program, companies are seeing substantial benefits in the cloud but are also navigating budgetary challenges. With an estimated 94% of companies using cloud services today, priorities for IT teams have shifted from purely adoption-based to deploying new strategies. As they explore new territories, it can be a struggle to exploit the full value of their spend and the cloud's transformative capabilities ...