APM vs Monitoring in Cloud-Native Environments: Reject the False Dichotomy
August 24, 2018

Apurva Davé
Sysdig

Share this

Ask anyone who's managed software in production: Management tools have many useful attributes, but no single tool gives you everything you need. Oh sure, a new interface comes along and handles an emerging use case beautifully – for a while. But requirements inevitably change and new variables get added to the equation. You add, upgrade or increase the complexity as needed.

This is a familiar arc for developers, IT pros and anyone who manages applications and their underlying infrastructure. And the story is no different when you look at observability tools like application performance management (APM).

For DevOps professionals, the advent of cloud-native systems and X-as-a-service has exposed the limitations of traditional APM tools. Most APM tools were designed to instrument and visualize simpler, static monoliths, and focused on the application layer to visualize traces of individual transactions. The fact is, APM is still sorely needed for developers, but it is not a panacea when it comes to understanding the overall performance of your application.

With cloud native computing, you may have dozens of microservices and hundreds or thousands of short-lived containers spread across multiple clouds. The efficiency of microservices is great for developer agility, but microservice architectures have also complicated the job of the operations team to ensure the performance, uptime and security of their systems.

In this new world, DevOps is finding it needs a broader range of functionality to truly understand system performance and potential issues. That functionality includes:

■ Collection of high frequency, high cardinality metrics across all containers, applications, and microservices. This data is typically stored over a long time to enable trending, yet is becoming more complex in today’s systems

■ Correlation of metrics with events (like a Kubernetes scaling event or a code push)

■ Capture of deep troubleshooting information like logs or system calls to derive a root cause issue in both the application and/or the infrastructure

■ Tracing key transactions through the call stack

A New Breed of Monitoring

With this broad range of requirements, it is easy to see that one system is unlikely to serve all of these needs well. And that has led to wider adoption of a new breed of cloud-native IT infrastructure monitoring (ITIM), a device- or capability-oriented approach that focuses on drawing a link between your applications, microservices, and the underlying infrastructure.

According to Gregg Siegfried from Gartner, "IT Infrastructure monitoring has always been difficult to do well. Cloud platforms, containers and changing software architecture have only increased the challenges." (Gartner, "Monitoring Modern Services and Infrastructure" by Gregg Siegfried on 15 March 2018)

Cloud-native systems have radically increased the need for dynamic metric systems. In addition, organizations that need high-volume, high cardinality metrics (think Facebook or Netflix) used to be the exception, but they are now becoming commonplace across enterprises of all sizes. APM by itself can't meet the needs of these new systems.

As a result, organizations are adopting APM and ITIM alongside each other. Critical management criteria align with different monitoring tools. Performance metrics are associated with ITIM; tracing is aligned with APM; logging is part of incident and event management. While there is some overlap, if we look at their core functionality there is far more differentiation than repetition.

APM typically works with heavyweight instrumentation inside your application code, giving you a detailed look at how the code written by your developers is performing. That’s extremely valuable, especially when developers are debugging their code in test before it goes into production. Unfortunately, APM also abstracts away the underlying containers, hosts, and network infrastructure. That's not an issue for developers since they only need to worry about the code they wrote, but operations professionals must consider the entire stack, and have something resource-efficient enough to actually deploy across everything in production.

In contrast, a modern, cloud-native ITIM monitoring system doesn’t instrument your code. But it will give you system visibility by instrumenting all the hosts in your environment and give you visibility into networks (physical and software-defined), as well as hosts, containers, processes, base application metrics, and developer-provided custom metrics like Prometheus, statsd and JMX.

Scale is also a very different challenge for any implementation using ITIM. APM was not designed for high frequency, high cardinality, multi-dimensional metrics, but modern ITIM was conceived with massive scale and a need to recompute metrics on the fly based on high cardinality metadata. Your ITIM tool should enable you to store all the metrics in a raw form, and recompute the answers to questions on the fly - an essential.

With this rich functionality, cloud-native ITIM monitoring systems give you a powerful view of overall system performance, especially where your applications are interacting with underlying systems.

But again, for most organizations this isn't an either-or situation. You might eliminate your APM tool if you have absolute faith nothing will ever go wrong with your application code. Or if you're extremely confident your infrastructure, container, and orchestration tooling will always perform as expected. But most DevOps professionals will see through this false dichotomy and use some combination of these tools to ensure performance, reliability and security. And if your organization is focused on the fastest mean time to resolution (MTTR) as a performance metric, it's best to have both systems in place.

Apurva Davé is VP of Marketing at Sysdig
Share this

The Latest

October 21, 2021

Scaling DevOps and SRE practices is critical to accelerating the release of high-quality digital services. However, siloed teams, manual approaches, and increasingly complex tooling slow innovation and make teams more reactive than proactive, impeding their ability to drive value for the business, according to a new report from Dynatrace, Deep Cloud Observability and Advanced AIOps are Key to Scaling DevOps Practices ...

October 20, 2021

Over three quarters (79%) of database professionals are now using either a paid-for or in-house monitoring tool, according to a new survey from Redgate Software ...

October 19, 2021

Gartner announced the top strategic technology trends that organizations need to explore in 2022. With CEOs and Boards striving to find growth through direct digital connections with customers, CIOs' priorities must reflect the same business imperatives, which run through each of Gartner's top strategic tech trends for 2022 ...

October 18, 2021

Distributed tracing has been growing in popularity as a primary tool for investigating performance issues in microservices systems. Our recent DevOps Pulse survey shows a 38% increase year-over-year in organizations' tracing use. Furthermore, 64% of those respondents who are not yet using tracing indicated plans to adopt it in the next two years ...

October 14, 2021

Businesses are embracing artificial intelligence (AI) technologies to improve network performance and security, according to a new State of AIOps Study, conducted by ZK Research and Masergy ...

October 13, 2021

What may have appeared to be a stopgap solution in the spring of 2020 is now clearly our new workplace reality: It's impossible to walk back so many of the developments in workflow we've seen since then. The question is no longer when we'll all get back to the office, but how the companies that are lagging in their technological ability to facilitate remote work can catch up ...

October 12, 2021

The pandemic accelerated organizations' journey to the cloud to enable agile, on-demand, flexible access to resources, helping them align with a digital business's dynamic needs. We heard from many of our customers at the start of lockdown last year, saying they had to shift to a remote work environment, seemingly overnight, and this effort was heavily cloud-reliant. However, blindly forging ahead can backfire ...

October 07, 2021

SmartBear recently released the results of its 2021 State of Software Quality | Testing survey. I doubt you'll be surprised to hear that a "lack of time" was reported as the number one challenge to doing more testing, especially as release frequencies continue to increase. However, it was disheartening to see that a lack of time was also the number one response when we asked people to identify the biggest blocker to professional development ...

October 06, 2021

The role of the CIO is evolving with an increased focus on unlocking customer connections through service innovation, according to the 2021 Global CIO Survey. The study reveals the shift in the role of the CIO with the majority of CIO respondents stating innovation, operational efficiency, and customer experience as their top priorities ...

October 05, 2021

The perception of IT support has dramatically improved thanks to the successful response of service desks to the pandemic, lockdowns and working from home, according to new research from the Service Desk Institute (SDI), sponsored by Sunrise Software ...