Big Data in Application and Cloud Performance - Why and How
May 01, 2013

Vikas Aggarwal

Share this

Always regarded as a non-critical part of day-to-day operations in the past, Big Data and its delayed analysis was relegated to batch processing tools and monthly meetings. Today, as the IT industry has snowballed into a fast moving avalanche of Cloud, virtualization, outsourcing and distributed computing, the science of extracting meaningful intelligent metrics from Big Data has become an important and real-time component of IT Operations.

Why Big Data in Cloud Performance Tools?

No longer do IT management systems work in vertical or horizontal isolation as just a few years ago. The inter-dependence between IT Services, applications, servers, cloud services and network infrastructure has a direct and measurable impact on Business Services.

The amount of data generated by these components is huge and the rate at which this data is generated is so fast that traditional tools cannot keep up with any kind of real time correlation. The combined volume of data generated by this hybrid infrastructure can be huge, but if it is correlated properly, it can give misson critical insight into:

- the response times and behavior of an IT service or application

- the cause of performance degradation of an IT service

- trend analysis and proactive capacity planning

- see if SLAs are being met for business services

This data has to be analyzed and processed in real-time in order to provide proactive responses and alerting for service degradation. The data that is being collected can be structured or unstructured, coming from a variety of systems which depend on each other to offer optimal performance, and has little to no obvious linkage or keys to one another (i.e. the data coming from an application is completely independent of the data coming from the network that it is running on).

Some examples of data sources that need to be correlated are application logs, netflow, JMX, XML, SNMP, WMI, security logs, packet analysis, business service response times, weather, news, etc.

Enterprises are moving to hybrid cloud environments at an alarming rate and all customer surveys indicate that the complexity of these platforms are their biggest concern. Enterprises must adopt monitoring systems that are flexible and can handle Big Data efficiently so that they can offer real-time responses to alarms and get meaningful business impact analysis from all of the different data sources.

Contextual analytics and presentation of data from multiple sources is invaluable to IT Operations in troubleshooting poor application performance and user satisfaction.

As a simple example, a user response time application could send an alert that the response time of an application is too high. Application Performance Monitoring (APM) data could indicate that a database is responding slowly to queries because the buffers are starved and the number of transactions is abnormally high. Integrating with network netflow or packet data would allow immediate drill down to isolate which client IP address is the source of the high number of queries.

How to Handle Big Data for Cloud Performance

Traditional monitoring or BI platforms are not designed to handle the volume and variety of data from this hybrid IT infrastructure. The management platforms need to be designed to correlate Big Data from the IT components in real-time and provide feedback to the operations team for proactive responses. As these monitoring systems evolve, their Big Data correlation components will become richer and more analytical and will position these enterprises for the IT environments of the future.

New generation enterprise monitoring solutions that are scalable, have predictive analytics, multi-tenant and a granular security model are now available from a small number of vendors. Single use systems that are designed for just network data or just application data are trapped within the same boundaries that makes Big Data meaningless - by its very nature, Big Data systems need to be able to handle a very wide variety of data sources to provide greater uptime from faster troubleshooting and lower OpEx from correlated analysis.

Vikas Aggarwal is CEO of Zyrion.

Share this

The Latest

March 27, 2023

To achieve maximum availability, IT leaders must employ domain-agnostic solutions that identify and escalate issues across all telemetry points. These technologies, which we refer to as Artificial Intelligence for IT Operations, create convergence — in other words, they provide IT and DevOps teams with the full picture of event management and downtime ...

March 23, 2023

APMdigest and leading IT research firm Enterprise Management Associates (EMA) are partnering to bring you the EMA-APMdigest Podcast, a new podcast focused on the latest technologies impacting IT Operations. In Episode 2 - Part 1 Pete Goldin, Editor and Publisher of APMdigest, discusses Network Observability with Shamus McGillicuddy, Vice President of Research, Network Infrastructure and Operations, at EMA ...

March 22, 2023

CIOs have stepped into the role of digital leader and strategic advisor, according to the 2023 Global CIO Survey from Logicalis ...

March 21, 2023

Synthetic monitoring is crucial to deploy code with confidence as catching bugs with E2E tests on staging is becoming increasingly difficult. It isn't trivial to provide realistic staging systems, especially because today's apps are intertwined with many third-party APIs ...

March 20, 2023

Recent EMA field research found that ServiceOps is either an active effort or a formal initiative in 78% of the organizations represented by a global panel of 400+ IT leaders. It is relatively early but gaining momentum across industries and organizations of all sizes globally ...

March 16, 2023

Managing availability and performance within SAP environments has long been a challenge for IT teams. But as IT environments grow more complex and dynamic, and the speed of innovation in almost every industry continues to accelerate, this situation is becoming a whole lot worse ...

March 15, 2023

Harnessing the power of network-derived intelligence and insights is critical in detecting today's increasingly sophisticated security threats across hybrid and multi-cloud infrastructure, according to a new research study from IDC ...

March 14, 2023

Recent research suggests that many organizations are paying for more software than they need. If organizations are looking to reduce IT spend, leaders should take a closer look at the tools being offered to employees, as not all software is essential ...

March 13, 2023

Organizations are challenged by tool sprawl and data source overload, according to the Grafana Labs Observability Survey 2023, with 52% of respondents reporting that their companies use 6 or more observability tools, including 11% that use 16 or more.

March 09, 2023

An array of tools purport to maintain availability — the trick is sorting through the noise to find the right one. Let us discuss why availability is so important and then unpack the ROI of deploying Artificial Intelligence for IT Operations (AIOps) during an economic downturn ...