Bringing Alert Management into the Present with Advanced Analytics
March 25, 2015

Kevin Conklin
Ipswitch

Share this

We have smart cars on the horizon that will navigate themselves. Mobile apps that make communication, navigation and entertainment an integral part of our daily lives. Your insurance pricing may soon be affected by whether or not you wear a personal health monitoring device. Everywhere you turn, the very latest IT technologies are being leveraged to provide advanced services that were unimaginable even ten years ago. So why is it that the IT environments that provide these services are managed using an analytics technology designed for the 1970s?

The IT landscape has evolved significantly over the past few decades. IT management simply has not kept pace. IT operations teams are anxious that too many problems are reported first by end users. Support teams worry that too many people spend too much time troubleshooting. Over 70 percent of troubleshooting time is actually wasted following false hunches because alerts provide no value to the diagnostic process. Enterprises that are still reliant on yesterday’s management strategies will find it increasingly difficult to solve today’s operations and performance management challenges.

This is not just an issue of falling behind a technology curve. There is a real business impact in increasing incident rates, failing to detect potentially disastrous outages and human resources wasting valuable time. An increasing number of IT shops are anxiously searching for alternatives.

This is where advanced machine learning analytics can help.

Too often operations teams can become engulfed by alerts – getting tens of thousands a day and not knowing which to deal with and when, making it quite possible that something important was ignored while time was wasted on something trivial. Through a powerful combination of machine learning and anomaly detection, advanced analytics can reduce the alarms to a prioritized set that have the largest impact on the environment. By learning which alerts are “normal”, these systems define an operable status quo. In essence, machine learning filters out the “background noise” of alerts that, based on their persistence, have no effect on normal operations. From there, statistical algorithms identify and rank “abnormal” outliers on a scale measuring severity (value of a spike or drop occurrence), rarity (number of previous instances) or impact (quantity of related anomalies). The result is a reduction from hundreds of thousands of noisy alerts a week to a few dozen notifications of real problems.

Despite producing huge volumes of alerts, rules and thresholds implementations often miss problems or report them long after the customer has experienced the impact. The fear of generating even more alerts forces monitoring teams to select fewer KPIs, thus decreasing the likelihood of detection. Problems that slowly approach thresholds go unnoticed until user experience is already impacted. Adopting this advanced analytics approach empowers enterprises to not only identify problems that rules and thresholds miss or simply execute against too late, but also provide their troubleshooting teams with pre-correlated causal data.

By replacing legacy rules and thresholds with machine learning anomaly detection, IT teams can monitor larger sets of performance data in real-time. Monitoring more KPIs enable a higher percentage of issues to be detected before the users report them. Through real-time cross correlation, related anomalies are detected and alerts become more actionable. Early adopters report that they are able to reduce troubleshooting time by 75 percent, with commensurate reductions in the number of people involved by as much as 85 percent.

Advanced machine learning systems will fundamentally change the way data is converted into information over the next few years. If your business is leveraging information to provide competitive services, you can’t afford to be the laggard.

Kevin Conklin is VP of Product Marketing at Ipswitch
Share this

The Latest

December 05, 2023

Industry experts offer thoughtful, insightful, and often controversial predictions on how APM, AIOps, Observability, OpenTelemetry and related technologies will evolve and impact business in 2024. Part 2 covers more on Observability ...

December 04, 2023

The Holiday Season means it is time for APMdigest's annual list of Application Performance Management (APM) predictions, covering IT performance topics. Industry experts — from analysts and consultants to the top vendors — offer thoughtful, insightful, and often controversial predictions on how APM, observability, AIOps and related technologies will evolve and impact business in 2024. Part 1 covers APM and Observability ...

November 30, 2023

To help you stay on top of the ever-evolving tech scene, Automox IT experts shake the proverbial magic eight ball and share their predictions about tech trends in the coming year. From M&A frenzies to sustainable tech and automation, these forecasts paint an exciting picture of the future ...

November 29, 2023
The past few years have presented numerous challenges for businesses: a pandemic, rising interest rates, supply chain disruptions, and geopolitical conflict that sent shockwaves across the global economy. But change may finally be on the horizon. According to a recent report by Endava ... a majority of executives confirmed they are feeling optimistic about the current business climate, and as a result, are forecasting larger IT budgets, increased technology funding and rollout, and prioritized innovation in the coming year ...
November 28, 2023

Incident management processes are not keeping pace with the demands of modern operations teams, failing to meet the needs of SREs as well as platform and ops teams. Results from the State of DevOps Automation and AI Survey, commissioned by Transposit, point to an incident management paradox. Despite nearly 60% of ITOps and DevOps professionals reporting they have a defined incident management process that's fully documented in one place and over 70% saying they have a level of automation that meets their needs, teams are unable to quickly resolve incidents ...

November 27, 2023

Today, in the world of enterprise technology, the challenges posed by legacy Virtual Desktop Infrastructure (VDI) systems have long been a source of concern for IT departments. In many instances, this promising solution has become an organizational burden, hindering progress, depleting resources, and taking a psychological and operational toll on employees ...

November 22, 2023

Within retail organizations across the world, IT teams will be bracing themselves for a hectic holiday season ... While this is an exciting opportunity for retailers to boost sales, it also intensifies severe risk. Any application performance slipup will cause consumers to turn their back on brands, possibly forever. Online shoppers will be completely unforgiving to any retailer who doesn't deliver a seamless digital experience ...

November 21, 2023

Black Friday is a time when consumers can cash in on some of the biggest deals retailers offer all year long ... Nearly two-thirds of consumers utilize a retailer's web and mobile app for holiday shopping, raising the stakes for competitors to provide the best online experience to retain customer loyalty. Perforce's 2023 Black Friday survey sheds light on consumers' expectations this time of year and how developers can properly prepare their applications for increased online traffic ...

November 20, 2023

This holiday shopping season, the stakes for online retailers couldn't be higher ... Even an hour or two of downtime for a digital storefront during this critical period can cost millions in lost revenue and has the potential to damage brand credibility. Savvy retailers are increasingly investing in observability to help ensure a seamless, omnichannel customer experience. Just ahead of the holiday season, New Relic released its State of Observability for Retail report, which offers insight and analysis on the adoption and business value of observability for the global retail/consumer industry ...

November 16, 2023

As organizations struggle to find and retain the talent they need to manage complex cloud implementations, many are leaning toward hybrid cloud as a solution ... While it's true that using the cloud is not a "one size fits all" proposition, it is clear that both large and small companies prefer a hybrid cloud model ...