Skip to main content

Can APM Really Handle Serverless? - Part 1

Chris Farrell

I remember the moment I heard about Serverless technology. On a bus back to the hotel at a conference, I overheard a CTO telling one of her developers about this "new" thing called Lambda. She said (and I'm paraphrasing): "so, the code is there, but it's not running anywhere — until you need it, then it appears, executes and disappears again."

I literally (YES, literally) got goosebumps. I had thought containers were cool, but this? O-M-G!!!

That night I had visions of millions of pieces of code just waiting in the wings for its time to be executed. Of course, the reality of today is that Serverless is a big part of modern application strategy, but not executing every workload like one might think.

There are three key reasons for that:

1. Architecting a serverless function into your operating applications isn't (or wasn't) the easiest thing in the world to do.

2. While the idea of serverless workload execution promises minimal cloud operating costs, the reality of serverless platform pricing is that sometimes it might be more.

3. The monitoring and performance management tools relied upon by IT shops around the globe couldn't handle serverless,

Now, you might be thinking "but wait. Many application monitoring tools struggled for years with containers, but that technology took off like a rocket."

And you would be right. That's one of the reasons I asked myself this important question: Can APM tools Manage Serverless Workloads?

And the answer is "No, not really."

No, don't go searching the web for serverless monitoring to look for a lack of functional claims. Every monitoring solution in the world claims support for monitoring serverless platforms (at least one of them).

What I mean by my answer is that the "APM" solutions we've come to love over the last 2 decades can't handle Serverless Functions or deliver the same performance and operational details that they deliver for other architectural constructs — including App Servers, Frameworks, Cloud, even Containers. And the reason is that they're methodologies for collecting performance data simply won't operate with the same characteristics as it would in persistent code.

To fully understand the nuanced differences between running an agent and capturing data from an API as it relates to monitoring, let's look at some of the operational costs of running serverless code.

Let's first look at what I call the Unicorn of Serverless application functionality — a seldomly called stateless functional piece of work — calculating a payment would be a good example. The inputs are the loan amount, the number of payments and the annual interest rate — the outputs are the interest payment and full payment. The function is called seldomly, requires very few resources to run (meaning little setup) and operates statelessly.

The Unicorn function can be loaded onto a serverless platform such as Lambda with zero permanent persistence (saves money). And a cold start doesn't hurt performance, so it can literally open up and shut down when you need it (also saving money). Now that we've established the perfect way to operate a serverless workload from a financial efficiency perspective, let's consider the three prerequisites:

■ Seldomly called — in the realm of efficient development, services that are never called are either deprecated or rolled into other functionality to make storage and operations as efficient as possible. Thus, a meaningful piece of code that is seldomly called is not really a thing anymore.

■ Requires few resources — again, in the realm of meaningful functions, the need for resources (memory, storage, I/O, etc.) is usually directly related to how important a piece of code is. Which maps back to the same decision point as seldomly called — a function that requires few resources is unlikely to operate on its own, instead being part of a shared service with active listeners, triggers, etc.

■ Is stateless — this is perhaps the least likely of scenarios to be present in today's microservice applications. Even plain old informational websites contain state of users — history, cache, setup, preferences, etc. The odds of having any kind of critical application service that doesn't have a personalized aspect to the workload is rare.

That's why the Unicorn Serverless operation is a rarity, and why cost isn't necessarily less anymore. Since (almost) every function requires some level of resources to use and/or a state — or access to state through a known memory location, two things become a concern.

First is performance — if you have to spin up resource libraries every time you want to run your piece of code, that can have a significant overhead, depending on how complex and resource intensive your piece of code is. I'm going to come back to this in a minute or two, so remember how just setting up your libraries can cause a relative performance impact of 50 — 500%.

Given the performance conundrum, the solution is to use functionality in the serverless platforms, like Lambda, to keep a warm pulse of libraries running so that there's no performance impact. This is referred to as a warm start serverless function.

Now, while this may address the performance issue, naturally it begins to detract from our cost savings. It's one thing to only pay for CPU cycles when you need to run the function — quite another when you're still ALWAYS paying for something, just a little less than you normally would.

Go to: Can APM Really Handle Serverless? - Part 2

Hot Topics

The Latest

According to Auvik's 2025 IT Trends Report, 60% of IT professionals feel at least moderately burned out on the job, with 43% stating that their workload is contributing to work stress. At the same time, many IT professionals are naming AI and machine learning as key areas they'd most like to upskill ...

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...

In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

Image
Broadcom

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...

Can APM Really Handle Serverless? - Part 1

Chris Farrell

I remember the moment I heard about Serverless technology. On a bus back to the hotel at a conference, I overheard a CTO telling one of her developers about this "new" thing called Lambda. She said (and I'm paraphrasing): "so, the code is there, but it's not running anywhere — until you need it, then it appears, executes and disappears again."

I literally (YES, literally) got goosebumps. I had thought containers were cool, but this? O-M-G!!!

That night I had visions of millions of pieces of code just waiting in the wings for its time to be executed. Of course, the reality of today is that Serverless is a big part of modern application strategy, but not executing every workload like one might think.

There are three key reasons for that:

1. Architecting a serverless function into your operating applications isn't (or wasn't) the easiest thing in the world to do.

2. While the idea of serverless workload execution promises minimal cloud operating costs, the reality of serverless platform pricing is that sometimes it might be more.

3. The monitoring and performance management tools relied upon by IT shops around the globe couldn't handle serverless,

Now, you might be thinking "but wait. Many application monitoring tools struggled for years with containers, but that technology took off like a rocket."

And you would be right. That's one of the reasons I asked myself this important question: Can APM tools Manage Serverless Workloads?

And the answer is "No, not really."

No, don't go searching the web for serverless monitoring to look for a lack of functional claims. Every monitoring solution in the world claims support for monitoring serverless platforms (at least one of them).

What I mean by my answer is that the "APM" solutions we've come to love over the last 2 decades can't handle Serverless Functions or deliver the same performance and operational details that they deliver for other architectural constructs — including App Servers, Frameworks, Cloud, even Containers. And the reason is that they're methodologies for collecting performance data simply won't operate with the same characteristics as it would in persistent code.

To fully understand the nuanced differences between running an agent and capturing data from an API as it relates to monitoring, let's look at some of the operational costs of running serverless code.

Let's first look at what I call the Unicorn of Serverless application functionality — a seldomly called stateless functional piece of work — calculating a payment would be a good example. The inputs are the loan amount, the number of payments and the annual interest rate — the outputs are the interest payment and full payment. The function is called seldomly, requires very few resources to run (meaning little setup) and operates statelessly.

The Unicorn function can be loaded onto a serverless platform such as Lambda with zero permanent persistence (saves money). And a cold start doesn't hurt performance, so it can literally open up and shut down when you need it (also saving money). Now that we've established the perfect way to operate a serverless workload from a financial efficiency perspective, let's consider the three prerequisites:

■ Seldomly called — in the realm of efficient development, services that are never called are either deprecated or rolled into other functionality to make storage and operations as efficient as possible. Thus, a meaningful piece of code that is seldomly called is not really a thing anymore.

■ Requires few resources — again, in the realm of meaningful functions, the need for resources (memory, storage, I/O, etc.) is usually directly related to how important a piece of code is. Which maps back to the same decision point as seldomly called — a function that requires few resources is unlikely to operate on its own, instead being part of a shared service with active listeners, triggers, etc.

■ Is stateless — this is perhaps the least likely of scenarios to be present in today's microservice applications. Even plain old informational websites contain state of users — history, cache, setup, preferences, etc. The odds of having any kind of critical application service that doesn't have a personalized aspect to the workload is rare.

That's why the Unicorn Serverless operation is a rarity, and why cost isn't necessarily less anymore. Since (almost) every function requires some level of resources to use and/or a state — or access to state through a known memory location, two things become a concern.

First is performance — if you have to spin up resource libraries every time you want to run your piece of code, that can have a significant overhead, depending on how complex and resource intensive your piece of code is. I'm going to come back to this in a minute or two, so remember how just setting up your libraries can cause a relative performance impact of 50 — 500%.

Given the performance conundrum, the solution is to use functionality in the serverless platforms, like Lambda, to keep a warm pulse of libraries running so that there's no performance impact. This is referred to as a warm start serverless function.

Now, while this may address the performance issue, naturally it begins to detract from our cost savings. It's one thing to only pay for CPU cycles when you need to run the function — quite another when you're still ALWAYS paying for something, just a little less than you normally would.

Go to: Can APM Really Handle Serverless? - Part 2

Hot Topics

The Latest

According to Auvik's 2025 IT Trends Report, 60% of IT professionals feel at least moderately burned out on the job, with 43% stating that their workload is contributing to work stress. At the same time, many IT professionals are naming AI and machine learning as key areas they'd most like to upskill ...

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...

In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

Image
Broadcom

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...