9 Out of 10 Enterprises Experience Challenges Integrating AI into Their Tech Stack
March 14, 2024

Rich Waldron
Tray.io

Share this

The integration and maintenance of AI-enabled Software as a Service (SaaS) applications have emerged as pivotal points in enterprise AI implementation strategies, offering both significant challenges and promising benefits. Despite the enthusiasm surrounding AI's potential impact, the reality of its implementation presents hurdles. Currently, over 90% of enterprises are grappling with limitations in integrating AI into their tech stack.

We recently commissioned and released findings from The 2024 AI Implementation Strategies in the Enterprise survey that delves into insights from a diverse cohort of 1,044 US-based business professionals, including executives, team leaders, department heads, and practitioners at companies with 1,000 or more employees. This study explores the intricacies of AI integration efforts across various industries and internal departments. We found the following:

1. SaaS bloat remains a challenge — and AI is further complicating the issue

SaaS bloat persists as a significant challenge, with more than half of respondents (55%) reporting that they have more than 50 SaaS apps in their tech stack, and 37% state they have more than 100. Complicating matters further, the majority of SaaS applications now incorporate f AI functionality — 73% of respondents state that over half of their apps have AI capabilities or AI-augmented features. Moreover, 96% intend to leverage these AI features to enhance process efficiency and employee productivity, customer satisfaction and cost reduction.

2. The rapid proliferation of AI within existing SaaS apps is causing significant integration pains

Organizations face challenges such as provisioning, ongoing management, change management, developer dependency, lack of implementation frameworks, and difficulty in experimenting with and prototyping AI features. Additionally, AI tools are perceived as costly and time-intensive to integrate.

Looking ahead, as enterprises prioritize data governance and employee skill development in their AI implementation strategies, anticipated key challenges include managing data governance, compliance, security, and trust, along with addressing the lack of familiarity with AI tools and workforce skills. Employee resistance and deployment costs also loom as significant hurdles.

3. Lack of clear and aligned AI integration strategies threatens to hinder progress

The survey findings reveal a notable disconnect between executives and practitioners regarding AI implementation strategies. While almost half of enterprise executives (48%) emphasize building strong integrations between internal SaaS apps and AI, practitioners often lack clarity on AI strategy, with nearly 20% stating their organization lacks an AI strategy altogether.

4. Despite the challenges, enterprises are optimistic about the potential of AI

Enterprises remain optimistic about AI's potential benefits, including improving process efficiency, enhancing productivity, boosting customer satisfaction, reducing costs, and gaining competitive advantage. When asked, "where can your organization most benefit from the application of AI?" respondents identified IT is universally identified as the number one practice, followed by Product Development and Engineering and Customer Service and Success. Respondents envision leveraging AI to enhance internal processes, automate manual tasks, and improve decision-making. In the future, AI is expected to streamline tasks, accelerate decision-making, and provide frameworks to enhance job performance.

Streamlining AI Integration for Sustainable Growth

As enterprises embark on their AI implementation journeys, they will be challenged with managing the functionality of dozens of different AI features in a sustainable way without causing conflicts between connected apps in their tech stack. Organizations should proactively address the dual challenges of SaaS bloat and the accelerated infusion of AI functionalities by auditing their tech stack, prioritizing applications for AI integration, and developing robust implementation frameworks. Cross-functional collaboration is also crucial for aligning IT, data governance, compliance and business objectives, while a mindset of continuous improvement ensures adaptability to the evolving landscape of AI integration.

Despite current challenges, organizations should maintain optimism about AI's potential benefits, including improved efficiency, productivity, customer satisfaction, cost reduction and competitive advantage. Leveraging AI across various departments, particularly in IT, product development, engineering and customer service, can yield significant dividends.

Moving forward, by thoughtfully prioritizing the strategic integration of AI into business processes with a lens on sustainability and optimization, organizations can unlock the full potential of AI to drive innovation and success in the digital age.

Rich Waldron is CEO and Co-Founder of Tray.io
Share this

The Latest

April 19, 2024

In MEAN TIME TO INSIGHT Episode 5, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses the network source of truth ...

April 18, 2024

A vast majority (89%) of organizations have rapidly expanded their technology in the past few years and three quarters (76%) say it's brought with it increased "chaos" that they have to manage, according to Situation Report 2024: Managing Technology Chaos from Software AG ...

April 17, 2024

In 2024 the number one challenge facing IT teams is a lack of skilled workers, and many are turning to automation as an answer, according to IT Trends: 2024 Industry Report ...

April 16, 2024

Organizations are continuing to embrace multicloud environments and cloud-native architectures to enable rapid transformation and deliver secure innovation. However, despite the speed, scale, and agility enabled by these modern cloud ecosystems, organizations are struggling to manage the explosion of data they create, according to The state of observability 2024: Overcoming complexity through AI-driven analytics and automation strategies, a report from Dynatrace ...

April 15, 2024

Organizations recognize the value of observability, but only 10% of them are actually practicing full observability of their applications and infrastructure. This is among the key findings from the recently completed Logz.io 2024 Observability Pulse Survey and Report ...

April 11, 2024

Businesses must adopt a comprehensive Internet Performance Monitoring (IPM) strategy, says Enterprise Management Associates (EMA), a leading IT analyst research firm. This strategy is crucial to bridge the significant observability gap within today's complex IT infrastructures. The recommendation is particularly timely, given that 99% of enterprises are expanding their use of the Internet as a primary connectivity conduit while facing challenges due to the inefficiency of multiple, disjointed monitoring tools, according to Modern Enterprises Must Boost Observability with Internet Performance Monitoring, a new report from EMA and Catchpoint ...

April 10, 2024

Choosing the right approach is critical with cloud monitoring in hybrid environments. Otherwise, you may drive up costs with features you don’t need and risk diminishing the visibility of your on-premises IT ...

April 09, 2024

Consumers ranked the marketing strategies and missteps that most significantly impact brand trust, which 73% say is their biggest motivator to share first-party data, according to The Rules of the Marketing Game, a 2023 report from Pantheon ...

April 08, 2024

Digital experience monitoring is the practice of monitoring and analyzing the complete digital user journey of your applications, websites, APIs, and other digital services. It involves tracking the performance of your web application from the perspective of the end user, providing detailed insights on user experience, app performance, and customer satisfaction ...

April 04, 2024
Modern organizations race to launch their high-quality cloud applications as soon as possible. On the other hand, time to market also plays an essential role in determining the application's success. However, without effective testing, it's hard to be confident in the final product ...