Chasing a Moving Target: APM in the Cloud - Part 2
Detection, Analysis and Action
February 21, 2013

Albert Mavashev
Nastel Technologies

Share this

In my last blog, I discussed strategies for dealing with the complexities of monitoring performance in the various stacks that make up a cloud implementation. Here, we will look at ways to detect trends, analyze your data, and act on it.

The first requirement for detecting trends in application performance in the cloud is to have good information delivered in a timely manner about each stack as well as the application.
  
We acquire this information via data collectors that harvest all relevant indicators within the same clock tick. For example: response time, GC activity, memory usage, CPU Usage. Doing this within the same clock tick is called serialization. It is of little use to know I have a failed transaction at time X, but only have CPU and memory data from X minus 10 minutes.

Next, we require a history for each metric. This can be maintained in memory for near real-time analysis, but we also need to use slower storage for longer-term views.

Finally, we apply pattern matching to the data. We might scan and match metrics such as “find all applications whose GC is above High Bollinger Band for 2+ samples.” Doing this in memory can enable very fast detection across a large number of indicators.

Here are three steps you can use to detect performance trends

1. Measure the relevant application performance indicators on the business side such as orders filled, failed or missed. And then, measure the ones on the IT side such as  JVM GC activity, memory, I/O rates.

2. Create a base line for each relevant indicator. This could a 1- to60-second sampling for near real-time monitoring. In addition set up a 1-, 10- and 15-minute sample or even daily, weekly or monthly for those longer in duration. You need both.

3. Apply analytics to determine trends and behavior

Keeping it Simple

Applying analytics can be easier than you expect. In fact, the more simple you keep it, the better.

The following three simple analytical techniques can be used in order to detect anomalies:

1. Bollinger Bands – 2 standard deviations off the mean – low and high. The normal is 2 standard deviations from the mean.

2. Percent of Change – This means comparing sample to sample, day to day or week to week, and calculating the percentage of change.

3. Velocity – Essentially this measures how fast indicators are changing. For example, you might be measuring response time and it drops from 10 to 20 seconds over a five-second interval or (20-10)/5 = 2 units/sec. With this technique, we are expecting a certain amount of change; however, when the amount of change is changing at an abnormal rate, we have most likely detected an anomaly.

Now That You Know ... Act On It

After the analysis, the next activity is to take action. This could be alerts, notification or system actions such as restarting processes or even resubmitting orders. Here, we are connecting the dots between IT and the business and alerting the appropriate owners. 

And In Conclusion

Elastic cloud-based applications can’t be monitored effectively using static models, as these models assume constancy. And the one thing constant about these applications is their volatility. In these environments, what was abnormal yesterday might likely be normal today. As a result, what static models indicate may be wrong. 

However, using a methodology comprised of gathering both business and IT metrics, creating automated base lines and applying analytics to them in real time can produce effective results and predict behavior. 

Albert Mavashev is Chief Technology Officer at Nastel Technologies.

Share this

The Latest

November 08, 2024

In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...

November 07, 2024

On average, only 48% of digital initiatives enterprise-wide meet or exceed their business outcome targets according to Gartner's annual global survey of CIOs and technology executives ...

November 06, 2024

Artificial intelligence (AI) is rapidly reshaping industries around the world. From optimizing business processes to unlocking new levels of innovation, AI is a critical driver of success for modern enterprises. As a result, business leaders — from DevOps engineers to CTOs — are under pressure to incorporate AI into their workflows to stay competitive. But the question isn't whether AI should be adopted — it's how ...

November 05, 2024

The mobile app industry continues to grow in size, complexity, and competition. Also not slowing down? Consumer expectations are rising exponentially along with the use of mobile apps. To meet these expectations, mobile teams need to take a comprehensive, holistic approach to their app experience ...

November 04, 2024

Users have become digital hoarders, saving everything they handle, including outdated reports, duplicate files and irrelevant documents that make it difficult to find critical information, slowing down systems and productivity. In digital terms, they have simply shoved the mess off their desks and into the virtual storage bins ...

November 01, 2024

Today we could be witnessing the dawn of a new age in software development, transformed by Artificial Intelligence (AI). But is AI a gateway or a precipice? Is AI in software development transformative, just the latest helpful tool, or a bunch of hype? To help with this assessment, DEVOPSdigest invited experts across the industry to comment on how AI can support the SDLC. In this epic multi-part series to be posted over the next several weeks, DEVOPSdigest will explore the advantages and disadvantages; the current state of maturity and adoption; and how AI will impact the processes, the developers, and the future of software development ...

October 31, 2024

Half of all employees are using Shadow AI (i.e. non-company issued AI tools), according to a new report by Software AG ...

October 30, 2024

On their digital transformation journey, companies are migrating more workloads to the cloud, which can incur higher costs during the process due to the higher volume of cloud resources needed ... Here are four critical components of a cloud governance framework that can help keep cloud costs under control ...

October 29, 2024

Operational resilience is an organization's ability to predict, respond to, and prevent unplanned work to drive reliable customer experiences and protect revenue. This doesn't just apply to downtime; it also covers service degradation due to latency or other factors. But make no mistake — when things go sideways, the bottom line and the customer are impacted ...

October 28, 2024

Organizations continue to struggle to generate business value with AI. Despite increased investments in AI, only 34% of AI professionals feel fully equipped with the tools necessary to meet their organization's AI goals, according to The Unmet AI Needs Surveywas conducted by DataRobot ...