Creating Agility with DevOps and AI-Driven ITSM
October 08, 2019

Akhil Sahai
Symphony SummitAI

Share this

There are some IT organizations that are using DevOps methodology but are wary of getting bogged down in ITSM procedures. But without at least some ITSM controls in place, organizations lose their focus on systematic customer engagement, making it harder for them to scale.

Other IT organizations believe that they're too large, complex and/or process-driven to adopt DevOps. Perhaps team members would like to give it a try but fear that their culture is too old-school and would not allow the disruption that DevOps usually brings. However, process is made for users, not the other way around, and an over-focus on process can keep customers from receiving the experience they need.

So then, DevOps and IT service management must not be mutually exclusive anymore. In fact, combining the two offers organizations ways to scale the enterprise and create agility while maintaining control of IT. They gain both speed and process controls. IT Service Management has to be re-imagined for that to happen successfully. By using technologies like AI/ML, ITSM has been re-imagined so much so that DevOps and ITSM are synergistic now. For instance, organizations can track and resolve incidents and create service requests and have them fulfilled in DevOps environments with AI-driven service management in minutes.

AI-Driven ITSM and DevOps Are Colleagues, Not Enemies

With the advent of AI, many such scenarios are made possible. Organizations for example can deploy an AI-driven digital agent available 24/7 to developers to use across multiple channels. Developers can create service requests for sandboxed environments and have them stood up or taken away and add additional capacity to existing development environments, in minutes. The digital agent would understand and classify the intent of requests using AI and resolve these requests automatically without human intervention. If there are approvals involved, such a digital agent will be able to seek approvals and still automate these deployments thus taking significant load off operations teams.

Similarly, incidents may be tracked in the operations environment, service tickets created and may be resolved by using AI-driven automation in matter of minutes. This would help bring much-needed agility in DevOps environments while following the best of IT Service Management practices.

DevOps doesn't eliminate the need for controls and data. Controls still need to be maintained and risks still need to be managed. AI-driven ITSM for DevOps brings new ways to achieve speed and control while driving value through the IT channel and supporting existing ITSM and DevOps initiatives within a company.

A More Perfect Union

DevOps and ITSM are not an either/or proposition. Instead, they need to be integrated so that the best aspects of each yield a result that is greater than the sum of their parts. Organizations will be able to scale quickly while maintaining process controls. Integration tools make this easier, as do AI-based digital agents. Essentially, there's never been a better time to bring AI-driven ITSM and DevOps together. Doing so will yield greater agility, speed, control and growth potential.

Dr. Akhil Sahai is Chief Product Officer at Symphony SummitAI
Share this

The Latest

November 07, 2019

Microservices have become the go-to architectural standard in modern distributed systems. While there are plenty of tools and techniques to architect, manage, and automate the deployment of such distributed systems, issues during troubleshooting still happen at the individual service level, thereby prolonging the time taken to resolve an outage ...

November 06, 2019

A recent APMdigest blog by Jean Tunis provided an excellent background on Application Performance Monitoring (APM) and what it does. A further topic that I wanted to touch on though is the need for good quality data. If you are to get the most out of your APM solution possible, you will need to feed it with the best quality data ...

November 05, 2019

Humans and manual processes can no longer keep pace with network innovation, evolution, complexity, and change. That's why we're hearing more about self-driving networks, self-healing networks, intent-based networking, and other concepts. These approaches collectively belong to a growing focus area called AIOps, which aims to apply automation, AI and ML to support modern network operations ...

November 04, 2019

IT outages happen to companies across the globe, regardless of location, annual revenue or size. Even the most mammoth companies are at risk of downtime. Increasingly over the past few years, high-profile IT outages — defined as when the services or systems a business provides suddenly become unavailable — have ended up splashed across national news headlines ...

October 31, 2019

APM tools are ideal for an application owner or a line of business owner to track the performance of their key applications. But these tools have broader applicability to different stakeholders in an organization. In this blog, we will review the teams and functional departments that can make use of an APM tool and how they could put it to work ...

October 30, 2019

Enterprises depending exclusively on legacy monitoring tools are falling behind in business agility and operational efficiency, according to a new study, Prevalence of Legacy Tools Paralyzes Enterprises' Ability to Innovate conducted by Forrester Consulting ...

October 29, 2019

Hyperconverged infrastructure is sometimes referred to as a "data center in a box" because, after the initial cabling and minimal networking configuration, it has all of the features and functionality of the traditional 3-2-1 virtualization architecture (except that single point of failure) ...

October 28, 2019

Hyperconvergence is a term that is gaining rapid interest across the manufacturing industry due to the undeniable benefits it has delivered to IT professionals seeking to modernize their data center, or as is a popular buzzword today ― "transform." Today, in particular, the manufacturing industry is looking to hyperconvergence for the potential benefits it can provide to its emerging and growing use of IoT and its growing need for edge computing systems ...

October 24, 2019

More than 92 percent of US respondents agree that Artificial Intelligence (AI) and Machine Learning (ML) will become important for how they run their digital systems ...

October 23, 2019

Progress has been made with digital transformation projects, however technology leaders are finding that running their digitally transformed organizations is challenging and they are under increased pressure to prove business value, according to a survey from New Relic ...