Skip to main content

The Data Observability Imperative: Bridging the Gap Between Strategy and Execution

Bo Brunton
Pantomath

We're at a critical inflection point in the data landscape. In our recent survey of executive leaders in the data space — The State of Data Observability in 2024 — we found that while 92% of organizations now consider data reliability core to their strategy, most still struggle with fundamental visibility challenges. Despite heavy investments in data infrastructure, only 25% of organizations have full visibility into their data pipelines, and 90% require hours or weeks to resolve data issues. Clearly, the intent to do better is there, but something is getting in the way.

This disconnect between strategic intent and operational reality isn't just a technical challenge — it's a business risk that impacts trust (and the bottom line). Organizations urgently need to evolve from reactive monitoring to proactive observability. But how?

Image
Pantomath

 

Data Observability Is Now a Business Mandate

The data shows a clear and urgent mandate. Beyond the 92% who prioritize reliability, we're seeing organizations make significant shifts in their approach. 51% of leaders now "strongly agree" that data observability will be core to their strategy in the next one to three years — a 12% increase from 2023.

The heightened focus comes as organizations prepare for the next wave of innovation. A striking 91% expect generative AI to be key to their data strategies within three to five years, making reliable data pipelines more critical than ever. But achieving this reliability requires solving fundamental challenges in how we detect, diagnose, and resolve data issues.

Organizations are waking up to the fact that they can't treat data observability as an aspirational goal. It's become a business imperative. The research shows a strong correlation between visibility and confidence: teams with comprehensive observability are better positioned to leverage emerging technologies like generative AI and handle growing data complexity. Real-time insights minimize data downtime and its cascading impact on business operations.

As data environments continue to evolve in complexity, the cost of poor observability will only grow. The message from our research is clear: Those that shift toward end-to-end observability are better positioned in the market.

The Threat of the Reactive Posture

The tooling landscape shows a predominately reactive approach. While 74% rely on downstream teams to detect problems, only 41% use dedicated data observability tools. Other detection methods include platform-specific alerts (65%) and application performance monitoring tools (50%).

This reactive posture has serious business implications. The research shows data downtime slowing business operations (82%) and significant productivity losses for data engineering teams (77%). Without proactive monitoring and automated detection, organizations will continue struggling with lengthy incident resolution times, with 90% reporting it takes hours to weeks to resolve pipeline issues.

The Starting Point: Five Key Steps

There are five key steps organizations need to take to move from reactive to proactive observability:

1. Implement end-to-end pipeline visibility and traceability: 82% of respondents identify this as their greatest need. In other words, teams need comprehensive insights into every stage of their data pipelines to prevent disruptions before they impact operations.

2. Automate issue detection and resolution: Currently, 74% of organizations rely on downstream teams to detect problems, while only 41% use dedicated data observability tools. Moving to automated alerting mechanisms coupled with AI-driven root cause analysis can help teams avoid the scramble to troubleshoot a data emergency that's spiraled out of control.

3. Focus on data in motion: 43% of respondents emphasize the need to observe data as it moves through pipelines. Partial visibility from data at rest only goes so far; it's the difference between taking a static snapshot versus having a rolling, real-time camera filming the data lifecycle.

4. Leverage AI-driven observability for predictive insights: Adopt AI-driven tools that can identify subtle anomalies and predict potential issues before they escalate.

5. Implement automated root cause analysis: Given that 86% of organizations face challenges in resolving pipeline issues quickly, sophisticated alerting mechanisms coupled with AI-driven root cause analysis are vital.

The Future is AI-Driven Observability

The path forward is clear. Organizations need more sophisticated, AI-powered solutions. With 91% of enterprises expecting generative AI to be key to their data strategies in the next three to five years and with all the uncertainty surrounding AI accuracy, the foundation of reliable data becomes even more critical.

Our research shows organizations are juggling multiple cloud providers (71% using Azure, 59% AWS), diverse transformation tools (80% using Python), and growing report volumes (41% managing over 500 production reports). In these environments, manual monitoring is increasingly unsustainable. In fact, it's impossible.

The good news is that confidence is growing among organizations that have made the shift. The percentage of respondents who "strongly agree" they have full pipeline visibility rose from 14% in 2023 to 25% in 2024. With the right tools and approach, the visibility gap is closing.

Bo Brunton is the Director of Product at Pantomath

Hot Topics

The Latest

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...

In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

Image
Broadcom

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...

Today, organizations are generating and processing more data than ever before. From training AI models to running complex analytics, massive datasets have become the backbone of innovation. However, as businesses embrace the cloud for its scalability and flexibility, a new challenge arises: managing the soaring costs of storing and processing this data ...

The Data Observability Imperative: Bridging the Gap Between Strategy and Execution

Bo Brunton
Pantomath

We're at a critical inflection point in the data landscape. In our recent survey of executive leaders in the data space — The State of Data Observability in 2024 — we found that while 92% of organizations now consider data reliability core to their strategy, most still struggle with fundamental visibility challenges. Despite heavy investments in data infrastructure, only 25% of organizations have full visibility into their data pipelines, and 90% require hours or weeks to resolve data issues. Clearly, the intent to do better is there, but something is getting in the way.

This disconnect between strategic intent and operational reality isn't just a technical challenge — it's a business risk that impacts trust (and the bottom line). Organizations urgently need to evolve from reactive monitoring to proactive observability. But how?

Image
Pantomath

 

Data Observability Is Now a Business Mandate

The data shows a clear and urgent mandate. Beyond the 92% who prioritize reliability, we're seeing organizations make significant shifts in their approach. 51% of leaders now "strongly agree" that data observability will be core to their strategy in the next one to three years — a 12% increase from 2023.

The heightened focus comes as organizations prepare for the next wave of innovation. A striking 91% expect generative AI to be key to their data strategies within three to five years, making reliable data pipelines more critical than ever. But achieving this reliability requires solving fundamental challenges in how we detect, diagnose, and resolve data issues.

Organizations are waking up to the fact that they can't treat data observability as an aspirational goal. It's become a business imperative. The research shows a strong correlation between visibility and confidence: teams with comprehensive observability are better positioned to leverage emerging technologies like generative AI and handle growing data complexity. Real-time insights minimize data downtime and its cascading impact on business operations.

As data environments continue to evolve in complexity, the cost of poor observability will only grow. The message from our research is clear: Those that shift toward end-to-end observability are better positioned in the market.

The Threat of the Reactive Posture

The tooling landscape shows a predominately reactive approach. While 74% rely on downstream teams to detect problems, only 41% use dedicated data observability tools. Other detection methods include platform-specific alerts (65%) and application performance monitoring tools (50%).

This reactive posture has serious business implications. The research shows data downtime slowing business operations (82%) and significant productivity losses for data engineering teams (77%). Without proactive monitoring and automated detection, organizations will continue struggling with lengthy incident resolution times, with 90% reporting it takes hours to weeks to resolve pipeline issues.

The Starting Point: Five Key Steps

There are five key steps organizations need to take to move from reactive to proactive observability:

1. Implement end-to-end pipeline visibility and traceability: 82% of respondents identify this as their greatest need. In other words, teams need comprehensive insights into every stage of their data pipelines to prevent disruptions before they impact operations.

2. Automate issue detection and resolution: Currently, 74% of organizations rely on downstream teams to detect problems, while only 41% use dedicated data observability tools. Moving to automated alerting mechanisms coupled with AI-driven root cause analysis can help teams avoid the scramble to troubleshoot a data emergency that's spiraled out of control.

3. Focus on data in motion: 43% of respondents emphasize the need to observe data as it moves through pipelines. Partial visibility from data at rest only goes so far; it's the difference between taking a static snapshot versus having a rolling, real-time camera filming the data lifecycle.

4. Leverage AI-driven observability for predictive insights: Adopt AI-driven tools that can identify subtle anomalies and predict potential issues before they escalate.

5. Implement automated root cause analysis: Given that 86% of organizations face challenges in resolving pipeline issues quickly, sophisticated alerting mechanisms coupled with AI-driven root cause analysis are vital.

The Future is AI-Driven Observability

The path forward is clear. Organizations need more sophisticated, AI-powered solutions. With 91% of enterprises expecting generative AI to be key to their data strategies in the next three to five years and with all the uncertainty surrounding AI accuracy, the foundation of reliable data becomes even more critical.

Our research shows organizations are juggling multiple cloud providers (71% using Azure, 59% AWS), diverse transformation tools (80% using Python), and growing report volumes (41% managing over 500 production reports). In these environments, manual monitoring is increasingly unsustainable. In fact, it's impossible.

The good news is that confidence is growing among organizations that have made the shift. The percentage of respondents who "strongly agree" they have full pipeline visibility rose from 14% in 2023 to 25% in 2024. With the right tools and approach, the visibility gap is closing.

Bo Brunton is the Director of Product at Pantomath

Hot Topics

The Latest

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...

In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

Image
Broadcom

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...

Today, organizations are generating and processing more data than ever before. From training AI models to running complex analytics, massive datasets have become the backbone of innovation. However, as businesses embrace the cloud for its scalability and flexibility, a new challenge arises: managing the soaring costs of storing and processing this data ...