Datadog unveiled that its Database Monitoring product now observes MongoDB databases.
With this announcement, Datadog Database Monitoring supports the five most popular database types—MongoDB, Postgres, MySQL, SQL Server and Oracle.
Datadog Database Monitoring enables application developers and database administrators to troubleshoot and optimize inefficient queries across database environments. With it, teams can easily understand database load, pinpoint long-running and blocking queries, drill into precise execution details and optimize query performance to help prevent incidents and spiraling database costs.
"Replication failures or misconfigurations can result in significant downtime and data inconsistencies for companies, which may impact their application performance and reliability. That's why maintaining high availability across clusters with multiple nodes and replicas is critical," said Omri Sass, Director of Product Management at Datadog. "With support for the top five database types in the industry, Datadog Database Monitoring gives teams complete visibility into their databases, queries and clusters so that they can maintain performant databases and tie them to the health of their applications and success of their businesses."
Datadog Database Monitoring helps teams:
- Ensure high availability of databases: By providing a comprehensive list of database clusters alongside critical metrics like queries per second, reads and writes per second and replication details, teams can monitor overall cluster performance at a glance, detect potential issues early and take preventative measures.
- Optimize query and database performance: Teams track key query performance metrics—like latency, execution time and volume of data queried—to quickly detect long-running transactions, high-impact blockers and missing indices while receiving proactive recommendations to fix these issues.
- Resolve database and application issues faster: By integrating database monitoring and application performance monitoring, Datadog's unified platform correlates health metrics and distributed traces with query metrics and explain plans in one view in order to accelerate root cause analysis of high latency, leading to faster triage and resolution of issues.
MongoDB is a leading modern document database provider. MongoDB's document model streamlines the process of building data-driven applications with a developer-friendly query language and a flexible data model that is easy to work with and easy to scale. The newly added support for MongoDB by Datadog Database Monitoring makes it easier for joint customers to maximize performance by optimizing deployment and infrastructure allocation, for example, by analyzing resource usage and overlapping workloads to make the most of available resources.
"As enterprises take advantage of today's increasingly data-intensive workloads, it's critical that they have the tools needed to deploy high-performing applications with complete confidence," said Will Winn, Senior Director of Partners at MongoDB. "Customers trust MongoDB for its superior performance and flexibility, and now that Datadog Database Monitoring supports MongoDB, ensuring high availability and seamless performance of MongoDB database clusters is even easier."
Datadog Database Monitoring's support for MongoDB is now generally available.
The Latest
Industry experts offer predictions on how DataOps and related technologies will evolve and impact business in 2025. Part 3 covers data technology ...
Industry experts offer predictions on how DataOps and related technologies will evolve and impact business in 2025. Part 2 covers DataOps roles, Data Observability, Business Intelligence and Analytics ...
Industry experts offer predictions on how DataOps and related technologies will evolve and impact business in 2025 ...
Gartner highlighted the six trends that will have a significant impact on infrastructure and operations (I&O) for 2025 ...
Since IT costs can consume a significant share of revenue ... enterprises should (but often don't) pay close attention to the efficiency of IT operations at scale. Improving operational cost structures even fractionally can yield major savings for larger organizations, often in the tens of millions of dollars ...
Being able to access the full potential of artificial intelligence (AI) and advanced analytics has become a critical differentiator for businesses. These technologies allow for more informed decision-making, boost operational efficiency, enhance security, and reveal valuable insights hidden within massive data sets. Yet, for organizations to truly harness AI's capabilities, they must first tap into an often-overlooked asset: their mainframe data ...
The global IT skills shortage will persist, and perhaps worsen, over the next few years, carrying a collective price tag of more than $5 trillion. Organizations must search for ways to streamline their IT service management (ITSM) workflows in addition to, or even apart from, hiring more staff. Those who don't find alternative methods of ITSM efficiency will be left behind by their competitors ...
Embedding greater levels of deep learning into enterprise systems demands these deep-learning solutions to be "explainable," conveying to business users why it predicted what it predicted. This "explainability" needs to be communicated in an easy-to-understand and transparent manner to gain the comfort and confidence of users, building trust in the teams using these solutions and driving the adoption of a more responsible approach to development ...
Modern people can't spend a day without smartphones, and businesses have understood this very well! Mobile apps have become an effective channel for reaching customers. However, their distributed nature and delivery networks may cause performance problems ... Performance engineering can be a solution.
Industry experts offer predictions on how Cloud, FinOps and related technologies will evolve and impact business in 2025. Part 3 covers FinOps ...